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Industry Background 
For over a century, Appalachian State University’s New River Light and Power (NRLP) 

has been a cornerstone in providing reliable electricity to Western North Carolina’s utility homes 

and businesses. Managed by the Division of Finance and Operations, NRLP serves nearly 9,000 

residents and commercial clients in Boone and the surrounding areas. In January 2022, NRLP 

began sourcing electricity from Carolina Power Partners, a move that increased its capacity to 

incorporate more renewable energy. Partnering with App State’s Office of Sustainability, 

Facilities Operations, and the Renewable Energy Initiative, NRLP has facilitated various energy 

efficiency projects, including the installation of solar panels and funding the Broyhill Wind 

Turbine. NRLP’s commitment to dependable service has been recognized by the American 

Public Power Association’s Reliable Public Power Provider (RP3) program. Annually, it 

contributes around $650,000 to App State's general scholarship fund. NRLP's mission is to 

provide efficient and reliable electrical service to Appalachian State University, Boone, and the 

surrounding communities, while also supporting the university’s financial needs. In doing so, 

NRLP strengthens the bond between Appalachian State University, Boone, and the local 

community, fostering economic development and positive public relations. 
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Purpose 

The project aims to create a predictive model for Appalachian State University’s New 

River Light and Power (NRLP) to forecast peak energy demand accurately. This model is 

designed to pinpoint times of maximum power usage, aiding NRLP in optimizing energy 

distribution and improve operational efficiency. By informing consumers about peak demand 

periods, the model helps them manage their energy consumption more efficiently, ultimately 

reducing costs. 

Moreover, the project will support NRLP in enhancing operational efficiency and 

sustainability by lowering cost during peak demand and facilitating the integration of renewable 

energy sources. The initiative promotes energy conservation, encouraging consumers to adopt 

efficient energy practices, and contributes to reducing the overall carbon footprint, in line with 

NRLP’s sustainable objectives.  

By providing consumers with valuable insights and tools to manage their energy usage, 

the project aims to boost customer satisfaction. It also supports NRLP's mission of delivering 

reliable electrical service, strengthening the relationship between Appalachian State University, 

the town of Boone, and the surrounding communities, and fostering economic development 

through improved energy management. Overall, this project aligns with the objectives of 

enhancing energy distribution management, operational efficiency, and sustainability efforts. 
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Business Problem 
 The primary goal is to create an advanced predictive model that accurately forecasts peak 

energy demand by utilizing historical consumption data, weather conditions, and other pertinent 

factors. This model will be a crucial tool for NRLP in optimizing energy distribution and 

enhancing overall efficiency. By alerting consumers about anticipated peak demand times, the 

project encourages them to modify their energy usage patterns, leading to increased energy 

efficiency. As a result, consumers can reduce their energy bills by minimizing usage during peak 

hours, which are typically more expensive. Furthermore, by decreasing peak demand, NRLP can 

lower its costs related to energy procurement and distribution. 
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Project Goals 
 The primary goal of the project is to develop a predictive model that accurately forecasts 

peak energy demand for NRLP, identifying periods of maximum power consumption to enhance 

energy distribution management. By predicting peak demand, the model will improve NRLP's 

operational efficiency, optimizing resource management and reducing costs related to energy 

procurement and distribution. Additionally, the project supports NRLP's commitment to 

sustainability by promoting efficient energy use, lowering the carbon footprint, and facilitating 

the integration of renewable energy sources. It also aims to enhance consumer experience by 

providing timely information about peak demand periods, enabling users to adjust their energy 

consumption patterns and potentially save money by avoiding higher peak-hour rates. 

Ultimately, the project contributes to the broader sustainability goals of Appalachian State 

University and the surrounding community by fostering energy efficiency and supporting 

economic development.  
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Literature Review 

Introduction 
Effectively managing peak electricity demand is vital for maintaining grid stability and 

economic efficiency (Fu et al., 2023). Battery Energy Storage Systems (BESS) are emerging as 

valuable tools for reducing peak demand through their ability to respond instantly (Fu et al., 

2023). However, predicting peak demand with precision remains a significant challenge, which 

affects the optimal use and placement of BESS (Fu et al., 2023). 

Machine Learning Models for Peak Demand Prediction 
Advances in machine learning (ML) are proving beneficial in refining peak demand 

predictions. While traditional forecasting methods like Autoregressive Integrated Moving 

Average (ARIMA) are still used, newer nonlinear ML techniques are enhancing predictions by 

incorporating various factors such as weather and economic indicators (Fu et al., 2023). 

Researchers have experimented with multiple ML models, including K-nearest neighbors 

(KNN), Support Vector Machines (SVM), Gradient Boosting Machines (GBM), Random Forest 

(RF), and Artificial Neural Networks (ANN). These models, either standalone or combined, aim 

to predict peak electricity demand more accurately (Fu et al., 2023). For instance, Fu et al. 

(2023) developed a hybrid supervised ML approach that combines RF, GBM, and Logistic 

Regression (LR) to forecast peak hours and days. Their method, applied to the Duke Energy 

Progress system, demonstrated high accuracy in identifying peak times, thereby enhancing BESS 

operation and addressing uncertainties in peak demand forecasts (Fu et al., 2023).Fu et al. (2023) 

developed a supervised ML approach combining RF, GBM, and Logistic Regression (LR) to 

predict both the probability of the next operation day containing the peak hour of the month and 

the probability of an hour being the peak hour of the day. Their study, applied to the Duke 
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Energy Progress system, achieved significant success in identifying peak days and hours with 

high accuracy under varying conditions (Fu et al., 2023). This approach not only enhances the 

operational efficiency of BESS but also addresses uncertainties associated with peak demand 

forecasts, crucial for effective dispatch decision-making (Fu et al., 2023). 

Challenges and Future Directions 
 Despite these advancements, challenges such as insufficient data and the need for better 

uncertainty quantification remain (Fu et al., 2023). Future research should focus on refining ML 

models to better integrate temporal and physical factors, thereby improving the reliability and 

interpretability of peak demand predictions (Fu et al., 2023). 

Literature Review Integration 
The development of the predictive model for New River Light and Power (NRLP) was 

heavily influenced by the recent advancements in peak demand forecasting described in the 

literature. Fu et al. (2023) highlighted the significance of incorporating multivariate predictors, 

such as weather and economic factors, to improve prediction accuracy. Building on these 

insights, the project applied various machine learning techniques, including Multiple Regression, 

Logistic Regression, Support Vector Machines (SVM), and Fuzzy Regression, to explore the 

impact of weather variables on energy consumption patterns. 
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Data Collection 
In my data collection process, I leveraged two primary sources: energy usage data and 

weather data. The energy usage data, generously provided by the project sponsor, offered 

detailed hourly records for five diverse locations, including Boone. This granular data, delivered 

in CSV format, was crucial for capturing the nuanced energy consumption patterns throughout 

each day. Complementing this, I sourced daily weather data from the NOAA Integrated Surface 

Database (ISD), following the project sponsor's insightful recommendation during our initial 

meeting. This database, accessible and reliable, provided essential daily weather metrics such as 

temperature, precipitation, and wind speed for most of the study locations. The convergence of 

these rich datasets forms a robust foundation for the analysis, ensuring a comprehensive 

understanding of the interplay between energy usage and weather conditions. By meticulously 

integrating these data sources, I have not only set the stage for a thorough and nuanced analysis 

but also paved the way for future research and practical applications in optimizing energy 

consumption based on weather patterns. 

However, I encountered a significant challenge when collecting the weather data for 

Boone, as the dataset lacked crucial information on average wind speed. Determined to ensure a 

comprehensive dataset, I proactively sourced the missing wind data from another reliable 

website. This not only filled a critical gap but also enhanced the overall integrity of the dataset, 

ensuring that the analysis could account for all relevant weather variables across all locations. 

Python proved indispensable in this endeavor, providing the flexibility and power needed for 

efficient data management and integration. This meticulous and adaptive approach to data 

collection has laid a solid foundation for a thorough and accurate analysis, ultimately 

contributing to a deeper understanding of the interplay between energy usage and weather 
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conditions. Detailed information regarding the specific data variables and their sources can be 

found in Table A1 (Energy Usage Data) and Table A2 (Weather Data). 
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Data Cleansing 
In my data cleansing process, I undertook several steps to ensure the dataset was clean 

and ready for analysis. Using Python, along with the Pandas and NumPy packages, I first 

addressed the challenge of integrating energy usage data, which was recorded hourly, with daily 

weather data. To align these datasets, I started by checking for constant columns in the Weather 

Data (Table A2), identifying and removing those that did not vary and were thus unnecessary for 

the analysis. I also removed other columns that were deemed irrelevant from the outset. A 

significant challenge was reconciling the hourly energy usage data from the Energy Usage Data 

(Table A1) with the daily weather metrics. To address this, I aggregated the hourly energy 

consumption data by summing it up for each day, which ensured it matched the daily granularity 

of the weather data. I then incorporated these daily energy usage columns into the weather data. 

To account for temporal aspects, I split the DATE column into three separate columns—month, 

day, and year and recognized that different times of the year might require different models due 

to seasonal variations. Following this, I removed any additional unneeded columns and handled 

missing values by replacing them with either the mean or the previous value, thus maintaining 

data integrity. Lastly, I created a correlation matrix to identify and understand relationships 

between variables, which was instrumental in guiding model selection and feature engineering.  
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Data Storage 
 For data storage in my project, I utilized a combination of tools and technologies to 

ensure efficient management and integrity of the datasets. The primary data formats employed 

were CSV files, which facilitated ease of access and compatibility with analysis tools. The 

Energy Usage Data was consolidated into a single CSV file, containing hourly records for all 

locations. In contrast, the Weather Data was stored in separate CSV files, each dedicated to a 

specific location, allowing for organized management of daily weather metrics. This approach 

not only streamlined data handling but also enhanced the efficiency of data integration and 

analysis. 

  



13 
 

Data Analysis 
I have conducted an extensive analysis to predict peak energy demand days, employing a 

variety of advanced statistical and machine learning models. Initially, I utilized multiple 

regression to understand the linear relationship between weather variables and energy demand. 

Then, I applied logistic regression to classify days as peak or non-peak demand based on the 

same variables. To capture potential interaction effects between variables, I also tested logistic 

regression with an interaction term, specifically interacting PRCP and TMIN. 

While most of the descriptive analytics had already been performed by a previous 

student, I added further depth to the analysis by creating a correlation matrix for each location. 

This matrix was instrumental in examining the relationships between different weather variables 

and energy demand. By analyzing the correlations, I was able to identify patterns and 

associations that might not be immediately obvious, such as how specific weather conditions 

influence energy consumption. This additional layer of descriptive analysis provided valuable 

insights into the variable interactions, helping to refine the understanding of how different 

weather factors impact energy demand. Ultimately, this comprehensive approach to descriptive 

analytics supported more informed decision-making in the development of predictive models. 

It was previously determined that different models would be required for various times of 

the year due to seasonal variations. Therefore, I developed separate models for the summer 

months (June through September), the winter months (November through March), and distinct 

models for the transitional months of April and October. This approach ensures that the models 

can effectively capture seasonal patterns and fluctuations in energy demand. By tailoring the 

models to specific periods, I aimed to enhance their accuracy and relevance, addressing the 
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unique characteristics of each season. This segmentation also allows for more precise forecasting 

and better management of energy resources throughout the year. 

Furthermore, I explored Support Vector Machines (SVM) to leverage their powerful 

classification capabilities. Lastly, I experimented with fuzzy regression to handle any uncertainty 

and imprecision in the data. Each of these models provided unique insights and contributed to a 

comprehensive understanding of the factors influencing peak energy demand days. For these 

models, I have used Concord energy usage data as testing data, which was later be applied to the 

Boone/New River usage data. 
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Results 

Concord 

Table 1 Concord Results  

Model Season R-Squared/Accuracy 

Multiple Regression (All 

Variables) 

Summer (May-September) 0.636 

Multiple Regression 

(AWND, SWND, TMAX, 

TMIN, TOBS, Month) 

Summer (May-September) 0.635 

Multiple Regression (All 

Variables) 

Winter (November-March) 0.153 

Multiple Regression (All 

Variables) 

April 0.499 

Multiple Regression (All 

Variables) 

October 0.493 

Logistic Regression (All 

Variables) 

Summer (May-September) 0.717 

Logistic Regression with 

Interaction Term (PRCP, 

TMIN, Day, Year, 

PRCP_TMIN) 

Summer (May-September) 0.4738 

Logistic Regression with 

Interaction Term (PRCP, 

TMIN, Day, Year, 

PRCP_TMIN) 

Winter (November-March) 0.6015 

Logistic Regression with 

Interaction Term (PRCP, 

TMIN, Day, Year, 

PRCP_TMIN) 

April 0.3838 

Logistic Regression with 

Interaction Term (PRCP, 

TMIN, Day, Year, 

PRCP_TMIN) 

October 0.5795 

Decision Tree All 0.7171 

Support Vector Machine 

(SVM) 

All 0.925 

Fuzzy Regression Summer (May-September) 0.848 
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Concord Result Interpretation 

The analysis of summer energy demand reveals that the fuzzy regression model and the 

updated OLS model identify temperature at observation (TOBS) and maximum temperature 

(TMAX) as significant predictors. The fuzzy regression model demonstrates a strong fit with an 

R-squared of 0.85, indicating its effectiveness in modeling summer energy usage. Despite these 

strengths, challenges such as multicollinearity and autocorrelation persist, suggesting that further 

refinement is necessary. Additionally, some predictors, like precipitation (PRCP), are not 

significant, emphasizing the predominant role of temperature-related factors in influencing peak 

demand during the summer months. In the winter period, models highlight snow depth (SNWD) 

and minimum temperature (TMIN) as key predictors of peak energy demand. The OLS model 

explains approximately 15.3% of the variance, with SNWD showing a positive relationship with 

peak demand. However, issues such as high multicollinearity and autocorrelation impact the 

reliability of these models, indicating the need for adjustments to improve their performance and 

accuracy. For October, the logistic regression model indicates that minimum temperature 

(TMIN) is a significant predictor of peak energy demand, accounting for 57.95% of the variance. 

Other variables, such as precipitation (PRCP), are not significant in this model. The presence of 

multicollinearity suggests that the model’s effectiveness could be compromised by high 

correlation among predictors, necessitating potential adjustments to enhance its predictive power. 

The logistic regression model for April shows TMIN as a significant predictor of peak energy 

demand, although it only explains 38.38% of the variance. Precipitation does not significantly 

impact peak days in this period. The model also faces challenges with multicollinearity, which 



17 
 

affects its effectiveness. Given the lower explanatory power compared to other months, 

additional predictors or model adjustments may be needed to improve its accuracy. 

Boone 

Table 2 Boone Results 

Model Season R-Squared/Accuracy 

Multiple Regression (All 

Variables) 

Summer (May-September) 0.511 

Multiple Regression (DAPR, 

MDPR, SNOW, SNWD, 

TMAX, TBOS, Month, Day, 

Year) 

Summer (May-September) 0.508 

Multiple Regression (All 

Variables) 

Winter (November-March) 0.847 

Multiple Regression (All 

Variables) 

April 0.333 

Multiple Regression (All 

Variables) 

October 0.047 

Logistic Regression with 

Interaction Term (PRCP, 

TMIN, Day, Year, 

PRCP_TMIN) 

Summer (May-September) 0.082 

Logistic Regression with 

Interaction Term (PRCP, 

TMIN, Day, Year, 

PRCP_TMIN) 

Winter (November-March) 0.487 

Logistic Regression with 

Interaction Term (PRCP, 

TMIN, Day, Year, 

PRCP_TMIN) 

April 0.263 

Logistic Regression with 

Interaction Term (PRCP, 

TMIN, Day, Year, 

PRCP_TMIN) 

October 0.091 

Decision Tree All 0.209 

Support Vector Machine 

(SVM) 

All 0.895 

Fuzzy Regression Summer (May-September) 0.511 
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Boone Results Interpretation 

The analyses provide a nuanced understanding of predicting peak energy usage for 

Boone, highlighting the impact of various factors across seasons, including transitional months 

like April and October. Temperature-related variables, particularly minimum temperature 

(TMIN), and weather patterns such as snow depth (SNWD) and precipitation (PRCP), emerge as 

crucial in forecasting peak energy demand. During summer, elevated levels of DAPR and MDPR 

strongly correlate with increased energy usage, whereas SNOW and SNWD tend to reduce 

demand. In contrast, winter models underscore the significance of minimum temperature and 

wind speed in predicting peak demand, with precipitation playing a less critical role. For 

transitional months, April shows a mix of significant predictors, including DAPR, MDPR, and 

SNWD, which exhibit both positive and negative relationships with energy demand. October, 

however, presents limited predictive power, with significant factors such as DAPR, MDPR, 

SNOW, and SNWD contributing minimally to the overall model. The findings suggest that while 

seasonal models provide robust predictions, addressing the unique patterns of transitional months 

can enhance the accuracy and effectiveness of peak energy demand forecasting and energy 

management strategies for Boone. 
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Comparison of Concord and Boone Models 
The comparison between the Concord and Boone models highlights how insights from 

one location can improve predictions for the other. Concord's strong performance in summer 

with the fuzzy regression model (R-squared = 0.848) underscores the value of temperature-

related variables, suggesting that similar methods could be beneficial for Boone, where summer 

models are less accurate. In winter, both Concord and Boone identify SNWD and TMIN as 

crucial predictors, but Concord's issues with multicollinearity and autocorrelation are reflected in 

Boone’s model performance, indicating that addressing these issues could enhance Boone’s 

accuracy. For the transitional months of April and October, Concord's models show that TMIN is 

a significant predictor, which offers a potential improvement for Boone’s models, particularly 

where October shows weak performance. The success of advanced techniques like SVM and 

fuzzy regression in Concord suggests that adopting these approaches could enhance Boone’s 

predictive accuracy. Overall, the challenges and successes observed in Concord provide valuable 

guidance for refining Boone’s models, especially in managing multicollinearity and improving 

the predictive power of temperature-related variables. 
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Challenges 

 Throughout the project, several challenges emerged that required strategic solutions to 

enhance model performance and ensure data consistency. Initially, low R-squared values 

indicated inadequate predictive power, prompting the reintroduction of the date column 

segmented into Month, Day, and Year to capture temporal nuances more effectively. 

Additionally, the disparity in data granularity, hourly energy usage data versus daily weather 

data, necessitated aggregating the energy data into daily averages to ensure compatibility and 

coherence in the analysis. Time constraints due to commitments in another course also limited 

the depth of exploratory analysis and model refinement. Despite these limitations, focusing on 

essential adjustments and strategic solutions helped address the challenges and improve overall 

model performance. 
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Implications 
 

The results from this project offer valuable insights for improving the prediction of peak 

energy usage and guiding future efforts. The analysis reveals significant predictors of peak 

demand for each season, such as temperature-related factors like TMAX and TMIN for summer 

and SNWD and TMIN for winter. To enhance model performance, it is crucial to refine existing 

models by incorporating these significant variables more effectively. Additionally, addressing 

data granularity issues where energy usage is recorded hourly and weather data daily requires 

aggregating energy usage data into daily averages to align temporal scales and improve model 

reliability. Reintroducing and segmenting the date column into Month, Day, and Year has proven 

beneficial for capturing temporal nuances, and this approach should be maintained in future 

models to better account for seasonal variations. Furthermore, managing multicollinearity 

through careful variable selection and regularization techniques, such as Lasso or Ridge 

regression, will improve model reliability and interpretability. Continuous validation and 

refinement of models are essential, given time constraints and the need for deeper exploratory 

analysis, to ensure that models remain accurate and relevant over time. Implementing these 

insights will not only improve predictive accuracy but also support more informed decision-

making. Finally, the insights gained from these models can inform strategic energy management 

practices, allowing organizations to implement targeted strategies for managing energy 

consumption, optimizing usage during peak periods, and ultimately reducing energy costs while 

enhancing efficiency. By proactively addressing these aspects, organizations can better align 

their energy management strategies with actual demand patterns, leading to more effective and 

cost-efficient energy solutions. 
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Recommendations 
To enhance NRLP's predictive capabilities through machine learning, focus on several 

key recommendations. First, tackle multicollinearity issues in winter models by employing 

advanced feature selection and dimensionality reduction techniques such as Principal Component 

Analysis (PCA) or regularization methods like Lasso. These methods will help simplify the 

models and improve interpretability, leading to more accurate predictions. Additionally, refine 

the models by developing more granular seasonal models that account for specific weather 

patterns and incorporating interaction terms to better capture the complex relationships between 

predictors and peak demand.  

Integrate additional weather variables, such as humidity and dew point, to provide a more 

nuanced understanding of energy demand patterns. These variables can offer deeper insights into 

how different weather conditions impact energy usage, potentially leading to more precise 

forecasts. For summer, focus on analyzing high-temperature periods and their impact on peak 

demand, utilizing advanced techniques like Long Short-Term Memory (LSTM) networks or 

recurrent neural networks (RNNs) to manage the complex time series data and variability in 

energy use during peak heat events. 

Future research should explore these advanced machine learning techniques and conduct 

comparative studies to evaluate their effectiveness in improving prediction accuracy across 

different seasons. Investigate how deep learning models, including LSTM and RNN, can 

enhance forecasting by capturing intricate patterns and trends in the data. Establish a robust 

framework for continuous performance monitoring to assess model effectiveness regularly, 

adjusting based on performance metrics and user feedback. This ongoing optimization will 
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ensure that NRLP’s energy demand forecasting remains accurate and effective throughout the 

year, ultimately improving operational efficiency and supporting sustainability goals. 
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Appendix 

Data Details 

Table A1. Hourly Energy Usage Data Description 

Hourly Energy Usage Data Description 

Colum Name Data Type Description  

UTC Object Timestamp in UTC timezone. 

Eastern Object  Timestamp in Eastern timezone 

Year int64 Year of the observation. Usage data ranges from 2015-2021. 

OrdDay  int64 Ordinal day of the year (1 to 365). 

OrdHr int64 Ordinal hour of the year (1 to 8760). 

Weekday int64 Day of the week (1 to 7). Ex. Monday 1, Tuesday 2, etc.  

Month int64 Month of the year (1 to 12). 

Day int64 Day of the month (1 to 31). 

HourEnd int64 Ending hour of the observation period (typically in military 

time). 

DST int64 Binary indicator (0 or 1) for Daylight Saving Time. 

Concord int64 Energy usage for Concord for the hour. 

Greenwood int64 Energy usage for Greenwood for the hour. 

NewRiver int64 Energy usage for New River for the hour. 

KingsMountain int64 Energy usage for Kings Mountain for the hour. 

Winterville int64 Energy usage for Winterville for the hour. 

Total int64 Total energy usage for the hour. 
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Peak int64 Binary Indicator (0 or 1) for peak time. 

 

Table A2. Weather Data 

Weather Data Description 

Colum Name Data Type Description  

AWND float64 Average daily windspeed in miles per hour (mph). 

DAPR float64 Number of days with measurable precipitation (at least 0.01 

inches) in the last 24 hours. 

MDPR float64 Maximum daily precipitation (in inches) recorded in the last 24 

hours. 

PRCP  float64 Daily precipitation (in inches). 

SNOW float64 Snowfall (in inches) on the ground. 

SNWD float64 Snow depth (in inches) on the ground. 

TMAX float64 Maximum temperature (in degrees Fahrenheit) during the day. 

TMIN float64 Minimum temperature (in degrees Fahrenheit) during the day. 

TBOS float64 Temperature at the time of observation (in degrees Fahrenheit). 

Month int64 Month of the year. 

Day int64 Day of the month. 

Year int64 Year of the observation. 

Concord/Boone float64 Daily energy usage for each respective location. 

 


