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Industry Background 
For over a century, Appalachian State University’s New River Light and Power (NRLP), 

a nonprofit electric utility overseen by the Division of Finance and Operations, has reliably 

powered the homes and businesses of Western North Carolina. Serving nearly 9,000 residents 

and commercial clients in and around Boone, NRLP began purchasing electricity from Carolina 

Power Partners in January 2022, enhancing its capacity to integrate more renewable energy 

sources. Collaborating with App State’s Office of Sustainability, Facilities Operations, and the 

Renewable Energy Initiative, NRLP has supported numerous energy efficiency projects on 

campus, including the installation of solar panels and funding the Broyhill Wind Turbine. 

Recognized by the American Public Power Association’s Reliable Public Power Provider (RP3) 

program, NRLP is commended for its dependable and safe electric service. Annually, it 

contributes around $650,000 of its budget to App State's general scholarship fund. NRLP's 

mission is to deliver efficient and reliable electrical service to Appalachian State University, 

Boone, and the surrounding communities, while also supporting the university’s financial needs. 

In fulfilling this mission, NRLP fosters a positive connection between Appalachian State 

University, Boone, and the surrounding areas, promoting economic development and positive 

public relations. 

Purpose 

The purpose of the project is to develop a predictive model that accurately forecasts peak 

energy demand for Appalachian State University’s New River Light and Power (NRLP). This 

model aims to identify periods of maximum power consumption, enabling NRLP to better 
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manage energy distribution and operational efficiency. By providing consumers with insights 

into peak demand periods, it allows them to optimize their energy usage and reduce costs. 

Additionally, the model will support NRLP’s efforts in operational efficiency and 

sustainability, including cost reduction during high peak demand periods and the integration of 

renewable energy sources. The project promotes energy efficiency, encouraging more efficient 

energy use among consumers, lowering the overall carbon footprint, and supporting NRLP’s 

sustainability goals.  

By equipping consumers with actionable insights and tools to manage their energy 

consumption effectively, the project seeks to enhance customer satisfaction. Furthermore, it will 

support NRLP’s mission to provide reliable electrical service, strengthen the connection between 

Appalachian State University, the town of Boone, and surrounding communities, and promote 

economic development through improved energy management. Overall, the project aligns with 

the goals of improving energy distribution management, enhancing operational and cost 

efficiencies, and contributing to sustainability efforts. 

Literature Review 

 Introduction 
  The efficient management of peak electricity demand is crucial for enhancing grid 

stability and economic efficiency (Fu et al., 2023). Battery Energy Storage Systems (BESS) offer 

promising solutions by enabling peak demand reduction through instantaneous response 

capabilities (Fu et al., 2023). However, accurately predicting peak demand days and hours 

remains a significant challenge, impacting the optimal deployment and operation of BESS (Fu et 

al., 2023).  
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Machine Learning Models for Peak Demand Prediction 
 Recent advancements in machine learning (ML) have shown potential in improving the 

accuracy of peak day and hour predictions. Traditional methods like Autoregressive Integrated 

Moving Average (ARIMA) are being supplemented by nonlinear ML approaches that leverage 

multivariate predictors such as weather and economic factors (Fu et al., 2023). Studies have 

explored various ML models including K-nearest neighbors (KNN), Support Vector Machines 

(SVM), Gradient Boosting Machines (GBM), Random Forest (RF), and Artificial Neural 

Networks (ANN), either individually or in hybrid forms, to forecast peak electricity demand (Fu 

et al., 2023).  

Fu et al. (2023) developed a supervised ML approach combining RF, GBM, and Logistic 

Regression (LR) to predict both the probability of the next operation day containing the peak 

hour of the month and the probability of an hour being the peak hour of the day. Their study, 

applied to the Duke Energy Progress system, achieved significant success in identifying peak 

days and hours with high accuracy under varying conditions (Fu et al., 2023). This approach not 

only enhances the operational efficiency of BESS but also addresses uncertainties associated 

with peak demand forecasts, crucial for effective dispatch decision-making (Fu et al., 2023). 

Challenges and Future Directions 
 Despite the progress made, challenges such as data inadequacy and the need for robust 

uncertainty quantification persist (Fu et al., 2023). Future research should focus on further 

refining ML models to incorporate all relevant temporal and physical factors, improving the 

reliability and interpretability of peak demand predictions (Fu et al., 2023). 
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Conclusion 
 In conclusion, the integration of ensemble ML techniques represents a significant 

advancement in forecasting peak electricity demand, offering potential benefits for grid stability 

and economic efficiency through optimized BESS deployment (Fu et al., 2023). Addressing 

remaining challenges through enhanced data augmentation and model selection techniques will 

be crucial for advancing the field (Fu et al., 2023). 

Methodology 

 Literature Review Integration 
  The methodology for developing the predictive model for New River Light and 

Power (NRLP) drew extensively from recent advancements in peak energy demand forecasting, 

as highlighted in the literature. Fu et al. (2023) emphasized the importance of integrating 

multivariate predictors such as weather and economic factors to enhance the accuracy of peak 

demand predictions. Building upon this foundation, the project utilized machine learning 

techniques including Multiple Regression, Logistic Regression, Support Vector Machines 

(SVM), and Fuzzy Regression to analyze the relationship between weather variables and energy 

consumption patterns. 

 Data Collection 
In my data collection process, I utilized two primary sources: the energy usage data and 

weather data. The energy usage data was provided to me by the project sponsor, encompassing 

detailed records of energy consumption for each location involved in the study. To complement 

this, I collected weather data from the NOAA Integrated Surface Database (ISD). This database 

offered comprehensive and reliable weather metrics, including temperature, precipitation, wind 
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speed, and other relevant variables for each location in the study. This dual data collection 

approach ensured that I had a robust dataset, integrating both energy consumption patterns and 

the corresponding weather conditions. Detailed information regarding the specific data variables 

and their sources can be found in Table A1 (Energy Usage Data) and Table A2 (Weather Data). 

Data Preparation 
 In my data preparation process, I undertook several steps to ensure the dataset was clean 

and ready for analysis. First, I checked for constant columns in my Weather Data (Table A2), 

identifying and removing those that did not vary and were thus unnecessary for the analysis. 

Alongside these, I also removed other columns that were deemed irrelevant from the outset. I 

then added a column named "Concord" to the weather data, which represented the sum of the 

daily energy usage for the Concord location which came from the Energy Usage Data (Table 

A1). To account for the temporal aspects of energy usage, I split the DATE column into three 

separate columns: month, day, and year, recognizing that different times of the year might 

require different models due to seasonal variations. I proceeded by removing any additional 

unneeded columns, followed by handling missing values, replacing them with the mean to 

maintain data integrity. Lastly, I created a correlation matrix to identify which columns were 

correlated, aiding in understanding the relationships between variables and informing model 

selection and feature engineering. 

Analysis Techniques 
I have conducted an extensive analysis to predict peak energy demand days, employing a 

variety of advanced statistical and machine learning models. Initially, I utilized multiple 

regression to understand the linear relationship between weather variables and energy demand. 

Then, I applied logistic regression to classify days as peak or non-peak demand based on the 
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same variables. To capture potential interaction effects between variables, I also tested logistic 

regression with an interaction term. The terms I interacted were PRCP and TMIN. Furthermore, I 

explored Support Vector Machines (SVM) to leverage their powerful classification capabilities. 

Lastly, I experimented with fuzzy regression to handle any uncertainty and imprecision in the 

data. Each of these models provided unique insights and contributed to a comprehensive 

understanding of the factors influencing peak energy demand days. For these models, I have used 

Concord energy usage data as testing data that will be then applied to the Boone/New River 

usage data. 

Challenges 
 Throughout the project, several challenges surfaced that required strategic solutions to 

enhance model performance and ensure data consistency. Initially, the models showed low R-

squared values, indicating inadequate predictive power. To address this, I reintroduced the date 

column and segmented it into three distinct variables (Month, Day, Year). This adjustment 

allowed the models to capture temporal nuances more effectively, thereby improving their 

accuracy in forecasting peak energy demand. Another significant challenge stemmed from the 

disparity in data granularity: energy usage data was recorded hourly, whereas weather data was 

available only on a daily basis. This inconsistency posed a hurdle during model execution, 

necessitating the aggregation of energy usage data into daily averages. By aligning the temporal 

granularity of both datasets, I ensured compatibility and coherence in the analysis, facilitating 

more accurate insights into the relationship between weather conditions and energy consumption 

patterns. 
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Results 

Table 1 Results  
Model Season R-Squared/Accuracy 

Multiple Regression (All 

Variables) 

Summer (May-September) 0.636 

Multiple Regression 

(AWND, SWND, TMAX, 

TMIN, TOBS, Month) 

Summer (May-September) 0.635 

Multiple Regression (All 

Variables) 

Winter (November-March) 0.153 

Multiple Regression (All 

Variables) 

April 0.499 

Multiple Regression (All 

Variables) 

October 0.493 

Logistic Regression (All 

Variables) 

Summer (May-September) 0.717 

Logistic Regression with 

Interaction Term (PRCP, 

TMIN, Day, Year, 

PRCP_TMIN) 

Summer (May-September) -0.427 

Support Vector Machine 

(SVM) 

All 0.925 

Fuzzy Regression Summer (May-September) 0.848 

 

Result Interpretation 

 Multiple Regression 

The analysis involved applying various models to predict peak energy demand, 

revealing significant insights. For the summer months (May to September), multiple 

regression using all variables achieved an R-squared value of 0.636, explaining 

approximately 63.6% of the variance in peak energy demand. Even when reducing the 

number of variables to only include AWND, SWND, TMAX, TMIN, TOBS, and Month, 

the model's performance remained almost unchanged, with an R-squared of 0.635. In 

contrast, the winter model (November to March) had a much lower R-squared value of 

0.153, indicating that only 15.3% of the variance in peak demand was explained, 
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suggesting that other factors might be more influential in winter. For the transitional 

months, April and October, the R-squared values were 0.499 and 0.493, respectively, 

demonstrating moderate explanatory power. From this, we can see that multiple 

regression works better in predicting peak energy demand during the summer months 

when more variables are included. 

Logistic Regression, Support Vector Machine, and Fuzzy Regression 

  Logistic regression for the summer months showed an accuracy of 71.7%, 

correctly predicting peak and non-peak days most of the time. However, adding an interaction 

term (PRCP_TMIN) resulted in a negative R-squared value of -0.427, indicating a poor model fit 

worse than a simple mean prediction. The support vector machine (SVM) model, applied to all 

seasons, performed exceptionally well, achieving a high accuracy of 92.5%, making it highly 

effective in predicting peak and non-peak days. However, it's important to note that SVM is 

particularly good at predicting non-peak days, or true negatives, which limits its usefulness for 

identifying peak days. Fuzzy regression for the summer months yielded an R-squared value of 

0.848, indicating a high level of explanatory power, capturing the nuances in the data for this 

particular season. From the results of these models, we can see that the fuzzy regression model is 

the best at accurately predicting peak energy demand.  

Conclusions 
 Based on a comprehensive analysis of the data, several key conclusions emerge regarding 

the predictive modeling of peak energy demand for New River Light and Power (NRLP). During 

the summer months, models incorporating weather related variables demonstrate robust 

performance in forecasting peak energy demand. This underscores the significant impact of 

weather conditions, such as temperature and precipitation, on energy consumption patterns 
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during warmer periods. These findings suggest that strategies focused on weather sensitive 

forecasting can effectively guide energy distribution and operational planning during peak 

demand seasons. 

Conversely, predictive models exhibit limited effectiveness during winter months, 

indicating that factors beyond weather variables, such as socioeconomic conditions and heating 

demands, play a pivotal role in shaping energy consumption trends during colder periods. This 

highlights the need for broader considerations in energy demand forecasting, encompassing both 

environmental and socioeconomic factors to enhance predictive accuracy across seasonal 

variations. 

Multiple regression models offer reasonable explanatory power in certain seasons but 

show variability in effectiveness across different times of the year. Further refinement of these 

models could improve consistency and reliability in predicting energy demand patterns 

throughout the year. Logistic regression, while moderately accurate in distinguishing peak and 

non-peak energy demand periods, requires careful management of model complexity, especially 

when incorporating interaction terms that can impact performance. 

Machine learning models, such as Support Vector Machines (SVM), demonstrate high 

accuracy in predicting energy demand patterns but exhibit sensitivity to the specific 

characteristics of the dataset and seasonal variations. These models prove valuable in capturing 

complex relationships between variables but necessitate ongoing adaptation and refinement to 

maintain predictive robustness across different seasons. 

Variables related to weather such as temperature, precipitation, and wind speed—

consistently emerge as critical predictors of energy demand. Incorporating these variables into 
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predictive models is essential for enhancing accuracy, particularly in seasonal forecasting efforts. 

However, the observed seasonal variability in model performance underscores the importance of 

continuous research and refinement. Future efforts should explore additional variables beyond 

weather, including economic indicators and local events, to capture nuanced aspects of energy 

demand variation throughout the year. 

In conclusion, NRLP can optimize energy management strategies by selecting models 

that accommodate seasonal variations and integrate relevant variables influencing energy 

demand patterns. Utilizing predictive insights effectively can enhance operational efficiency, 

inform energy distribution strategies, and empower consumers with information to encourage 

energy-saving behaviors. Investing in advanced modeling techniques and expanding data sources 

will further enhance the accuracy and reliability of energy demand forecasting, supporting 

NRLP’s sustainability goals and operational efficiency objectives throughout all seasons. 

Future Directions 
 My future research direction involves prioritizing the refinement of predictive models to 

enhance their accuracy and robustness across all seasons. This includes exploring additional 

variables beyond weather, such as economic indicators and local events, to capture nuanced 

aspects of energy demand variation throughout the year. Integrating more comprehensive 

datasets, such as real-time data feeds or socioeconomic data, holds promise for significantly 

improving model performance by providing deeper insights into energy consumption patterns, 

especially during critical periods. Moving forward, I aim to integrate these advanced predictive 

models into NRLP’s operational framework, establishing protocols for real-time monitoring and 

decision-making based on forecasted peak energy demand. This initiative is designed to optimize 
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energy distribution and enhance operational efficiency. Engaging stakeholders, including 

consumers and regulatory bodies, will be essential for gathering feedback on the utility and 

usability of predictive insights, guiding iterative improvements, and ensuring alignment with 

NRLP’s sustainability goals and customer satisfaction objectives. Continuous evaluation and 

refinement of predictive models will be ongoing, involving regular performance assessments 

against actual data to identify opportunities for enhancement and adaptation to evolving 

environmental and operational conditions.   
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Appendix 

Data Details 

Table A1. Hourly Energy Usage Data Description 

Hourly Energy Usage Data Description 

Colum Name Data Type Description  

UTC Object Timestamp in UTC timezone. 

Eastern Object  Timestamp in Eastern timezone 

Year int64 Year of the observation. Usage data ranges from 2015-2021. 

OrdDay  int64 Ordinal day of the year (1 to 365). 

OrdHr int64 Ordinal hour of the year (1 to 8760). 

Weekday int64 Day of the week (1 to 7). Ex. Monday 1, Tuesday 2, etc.  

Month int64 Month of the year (1 to 12). 

Day int64 Day of the month (1 to 31). 

HourEnd int64 Ending hour of the observation period (typically in military 

time). 

DST int64 Binary indicator (0 or 1) for Daylight Saving Time. 

Concord int64 Energy usage for Concord for the hour. 

Greenwood int64 Energy usage for Greenwood for the hour. 

NewRiver int64 Energy usage for New River for the hour. 

KingsMountain int64 Energy usage for Kings Mountain for the hour. 

Winterville int64 Energy usage for Winterville for the hour. 

Total int64 Total energy usage for the hour. 
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Peak int64 Binary Indicator (0 or 1) for peak time. 

 

Table A2. Weather Data 

Weather Data Description 

Colum Name Data Type Description  

AWND float64 Average daily windspeed in miles per hour (mph). 

DAPR float64 Number of days with measurable precipitation (at least 0.01 

inches) in the last 24 hours. 

MDPR float64 Maximum daily precipitation (in inches) recorded in the last 24 

hours. 

PRCP  float64 Daily precipitation (in inches). 

SNOW float64 Snowfall (in inches) on the ground. 

SNWD float64 Snow depth (in inches) on the ground. 

TMAX float64 Maximum temperature (in degrees Fahrenheit) during the day. 

TMIN float64 Minimum temperature (in degrees Fahrenheit) during the day. 

TBOS float64 Temperature at the time of observation (in degrees Fahrenheit). 

Month int64 Month of the year. 

Day int64 Day of the month. 

Year int64 Year of the observation. 

Concord float64 Daily energy usage. 

 


