
Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

C H A P T E R 3

A First Look at

Classes and

Objects

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Topics

Classes

More about Passing Arguments

Instance Fields and Methods

Constructors

A BankAccount Class

Classes, Variables, and Scope

Packages and import Statements

Focus on Object Oriented Design: Finding the

Classes and their Responsibilities

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Classes

In an object-oriented programming language,

like Java, you create programs that are made

of objects.

In software, an object has two capabilities:

An object can store data.

An object can perform operations.

The data stored in an object are commonly

called attributes or fields.

The operations that an object can perform

are called methods.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Strings as Objects

A primitive data type can only store

data, as it has no other built-in

capabilities.

An object can store data and perform

operations on that data.

In addition to storing strings, String objects

have numerous methods that perform

operations on the strings they hold.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Strings as Objects (cont’d)

From chapter 2, we learned that a

reference variable contains the address

of an object.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Strings as Objects (cont’d)

The length() method of the String class
returns and integer value that is equal to the
length of the string.

int stringLength = cityName.length();

The variable stringLength will contain 10
after this statement since the string
"Charleston" has 10 characters.

Primitives can not have methods that can be
run whereas objects can.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Classes and Instances

Many objects can be created from a class.

Each object is independent of the others.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Classes and Instances

(cont’d)

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Classes and Instances

(cont’d)
Each instance of the String class

contains different data.

The instances are all share the same

design.

Each instance has all of the attributes

and methods that were defined in the
String class.

Classes are defined to represent a

single concept or service.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Access Modifiers

An access modifier is a Java key word

that indicates how a field or method can

be accessed.

There are three Java access modifiers:

public

private

protected

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Access Modifiers

public: This access modifier states that any

other class can access the resource.

private: This access modifier indicates that

only data within this class can access the

resource.

protected: This modifier indicates that only

classes in the current package or a class

lower in the class hierarchy can access this

resource.

These will be explained in greater detail later.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Access Modifiers

Classes that need to be used by other classes are

typically made public.

If there is more than one class in a file, only one may

be public and it must match the file name.

Class headers have a format:

AccessModifier class ClassName

{

Class Members

}

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Encapsulation

Classes should be as limited in scope as

needed to accomplish the goal.

Each class should contain all that is needed

for it to operate.

Enclosing the proper attributes and methods

inside a single class is called encapsulation.

Encapsulation ensures that the class is self-

contained.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Designing a Class

When designing a class, decisions
about the following must be made.

what data must be accounted for

what actions need to be performed

what data can be modified

what data needs to be accessible

any rules as to how data should be modified

Class design typically is done with the
aid of a Unified Modeling Language
(UML) diagram.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

UML Class Diagram

A UML class diagram is a graphical tool

that can aid in the design of a class.

The diagram has three main sections.

Class Name

Attributes

Methods

UML diagrams are easily converted

to Java class files. There will be more

about UML diagrams a little later.

The class name should concisely reflect what

the class represents.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Attributes

The data elements of a class define the
object to be instantiated from the class.

The attributes must be specific to the
class and define it completely.

Example: A rectangle is defined by

length

width

The attributes are then accessed by
methods within the class.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Data Hiding

Another aspect of encapsulation is the

concept of data hiding.

Classes should not only be self-contained

but they should be self-governing as well.

Classes use the private access modifier on

fields to hide them from other classes.

Classes need methods to allow access and

modification of the class’ data.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Methods

• The class’ methods define the actions that an

instance of the class can perform

• Methods headers have a format:

AccessModifier ReturnType

MethodName(Parameters)

{

//Method body.

}

• Methods that need to be used by other classes

should be made public.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Methods

• The attributes of a class might need to

be:

– changed

– accessed

– calculated

• The methods that change and access

attributes are called accessors and

mutators.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Accessors and Mutators

• Because of the concept of data hiding, fields
in a class are private.

• The methods that retrieve the data of fields
are called accessors.

• The methods that modify the data of fields
are called mutators.

• Each field that the programmer wishes to be
viewed by other classes needs an accessor.

• Each field that the programmer wishes to be
modified by other classes needs a mutator.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Accessors and Mutators

• For the Rectangle example, the accessors

and mutators are:
– setLength : Sets the value of the length field.

public void setLength(double len) …

– setWidth : Sets the value of the width field.

public void setLength(double w) …

– getLength : Returns the value of the length field.

public double getLength() …

– getWidth : Returns the value of the width field.

public double getWidth() …

• Other names for these methods are getters

and setters.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Stale Data

• Some data is the result of a calculation.

• Consider the area of a rectangle.

– length times width

• It would be impractical to use an area

variable here.

• Data that requires the calculation of various

factors has the potential to become stale.

• To avoid stale data, it is best to calculate the

value of that data within a method rather than

store it in a variable.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Stale Data

• Rather than use an area variable in a

rectangle class:
public double getArea()

{

return length * width;

}

• This dynamically calculates the value of the

rectangle’s area when the method is called.

• Now, any change to the length or width

variables will not leave the area of the

rectangle stale.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

UML Data Type and

Parameter Notation
• UML diagrams are language independent.

• UML diagrams use an independent notation

to show return types, access modifiers, etc.

Rectangle

- width : double

+ setWidth(w : double) : void

Access modifiers

are denoted as:

+ public

- private

protected

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

UML Data Type and

Parameter Notation
• UML diagrams are language independent.

• UML diagrams use an independent notation

to show return types, access modifiers, etc.

Rectangle

- width : double

+ setWidth(w : double) : void

Variable types are

placed after the variable

name, separated by a

colon.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

UML Data Type and

Parameter Notation
• UML diagrams are language independent.

• UML diagrams use an independent notation

to show return types, access modifiers, etc.

Rectangle

- width : double

+ setWidth(w : double) : void

Method return types are

placed after the method

declaration name,

separated by a colon.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

UML Data Type and

Parameter Notation
• UML diagrams are language independent.

• UML diagrams use an independent notation

to show return types, access modifiers, etc.

Rectangle

- width : double

+ setWidth(w : double) : void

Method parameters

are shown inside the

parentheses using the

same notation as

variables.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

3-28

Converting the UML Diagram to Code

• Putting all of this information together, a Java

class file can be built easily using the UML

diagram.

• The UML diagram parts match the Java class

file structure.

ClassName

Attributes

Methods

class header

{

 Attributes

 Methods

}

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Converting the UML Diagram to Code

Rectangle

- width : double

- length : double

+ setWidth(w : double) : void

+ setLength(len : double): void

+ getWidth() : double

+ getLength() : double

+ getArea() : double

The structure of the class can be

compiled and tested without having

bodies for the methods. Just be sure to

put in dummy return values for methods

that have a return type other than void.

public class Rectangle

{

 private double width;

 private double length;

 public void setWidth(double w)

 {

 }

 public void setLength(double len)

 {

 }

 public double getWidth()

 { return 0.0;

 }

 public double getLength()

 { return 0.0;

 }

 public double getArea()

 { return 0.0;

 }

}

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Converting the UML Diagram to Code

Rectangle

- width : double

- length : double

+ setWidth(w : double) : void

+ setLength(len : double): void

+ getWidth() : double

+ getLength() : double

+ getArea() : double

Once the class structure has been tested,

the method bodies can be written and

tested.

public class Rectangle

{

 private double width;

 private double length;

 public void setWidth(double w)

 { width = w;

 }

 public void setLength(double len)

 { length = len;

 }

 public double getWidth()

 { return width;

 }

 public double getLength()

 { return length;

 }

 public double getArea()

 { return length * width;

 }

}

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Class Layout Conventions

The layout of a source code file can

vary by employer or instructor.

Generally the layout is:

Attributes are typically listed first

Methods are typically listed second

The main method is sometimes first, sometimes

last.

Accessors and mutators are typically grouped.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

A Driver Program

An application in Java is a collection of

classes that interact.

The class that starts the application
must have a main method.

This class can be used as a driver to

test the capabilities of other classes.

In the Rectangle class example, notice

that there was no main method.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

A Driver Program
public class RectangleDemo

{

 public static void main(String[] args)

 {

 Rectangle r = new Rectangle();

 r.setWidth(10);

 r.setLength(10);

 System.out.println("Width = "

 + r.getWidth());

 System.out.println("Length = "

 + r.getLength());

 System.out.println("Area = "

 + r.getArea());

 }

}

This RectangleDemo class is a

Java application that uses the

Rectangle class.

public class Rectangle

{

 private double width;

 private double length;

 public void setWidth(double w)

 { width = w;

 }

 public void setLength(double len)

 { length = len;

 }

 public double getWidth()

 { return width;

 }

 public double getLength()

 { return length;

 }

 public double getArea()

 { return length * width;

 }

}

RectangleDemo.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Multiple Arguments

Methods can have multiple parameters.

The format for a multiple parameter method

is:
AccessModifier ReturnType MethodName(ParamType ParamName,

ParamType ParamName,

etc)

{

}

Parameters in methods are treated as local

variables within the method.

Example: MultipleArgs.java

Rectangle Class Phase 5/MultipleArgs.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Arguments Passed By Value

In Java, all arguments to a method are

passed “by value”.

If the argument is a reference to an

object, it is the reference that is passed

to the method.

If the argument is a primitive, a copy of

the value is passed to the method.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Instance Fields and Methods

Fields and methods that are declared

as previously shown are called

instance fields and instance methods.

Objects created from a class each have

their own copy of instance fields.

Instance methods are methods that are

not declared with a special keyword,

static.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Instance Fields and Methods

Instance fields and instance methods require

an object to be created in order to be used.

Example: RoomAreas.java

Note that each room represented in this

example can have different dimensions.

Rectangle kitchen = new Rectangle();

Rectangle bedroom = new Rectangle();

Rectangle den = new Rectangle();

RoomAreas.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Constructors

Classes can have special methods

called constructors.

Constructors are used to perform

operations at the time an object is

created.

Constructors typically initialize

instance fields and perform other

object initialization tasks.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Constructors

Constructors have a few special properties

that set them apart from normal methods.

Constructors have the same name as the class.

Constructors have no return type (not even void).

Constructors may not return any values.

Constructors are typically public.

Example: ConstructorDemo.java

Example: RoomConstructor.java

Rectangle Class Phase 6/ConstructorDemo.java
Rectangle Class Phase 6/RoomConstructor.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Default Constructor

If a constructor is not defined, Java provides

a default constructor.

It sets all of the class’ numeric fields to 0.

It sets all of the class’ boolean fields to false.

It sets all of the class’ reference variables, the default

constructor sets them to the special value null.

The default constructor is a constructor with

no parameters.

Default constructors are used to initialize an

object in a default configuration.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Constructors in UML

In UML, the most common way constructors
are defined is:

Rectangle

- width : double

- length : double

+Rectangle(len:double, w:double)

+ setWidth(w : double) : void

+ setLength(len : double): void

+ getWidth() : double

+ getLength() : double

+ getArea() : double

Notice there is no

return type listed

for constructors.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The String Class

Constructor
One of the String class constructors

accepts a string literal as an argument.

This string literal is used to initialize a
String object.

For instance:

String name = new String("Michael Long");

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The String Class

Constructor
This creates a new reference variable name
that points to a String object that

represents the name “Michael Long”

Because they are used so often, Strings can

be created with a shorthand:

String name = "Michael Long";

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The BankAccount Example

BankAccount

- balance : double

- interestRate : double

- interest : double

+BankAccount(startBalance:double,

 intRate :double):

+ deposit(amount : double) : void

+ withdrawl(amount : double: void

+ addInterest() : void

+ getBalance() : double

+ getInterest() : double

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Classes, Variables and Scope

The list below shows the scope of a variable
depending on where it is declared.

Inside a method:

Visible only within that method.

Called a local variable.

In a method parameter:

Called a parameter variable.

Same as a local variable

Visible only within that method.

Inside the class but not in a method:

Visible to all methods of the class.

Called an instance field.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Shadowing

A parameter variable is, in effect, a local variable.

Within a method, variable names must be unique.

A method may have a local variable with the same

name as an instance field.

This is called shadowing.

The local variable will hide the value of the instance

field.

Shadowing is discouraged and local variable names

should not be the same as instance field names.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Packages and import

Statements
A package is a group of related classes.

The classes in the Java API are organized into

packages.

For example, the Scanner class is in the java.util

package.

Many of the API classes must be imported before

they can be used. For example, the following
statement is required to import the Scanner class:

import java.util.Scanner; This statement appears at

the top of the program's

source code.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Packages and import

Statements
Explicit import Statements

An explicit import statement specifies a single

class:

import java.util.Scanner;

Wildcard import Statements

A wildcard import statement imports all of the

classes in a package:

import java.util.*;

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Packages and import

Statements
The java.lang package

Automatically imported into every Java

program.

Contains general classes such as String

and System.

You do not have to write an import

statement for the java.lang package.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Packages and import

Statements
You will use other packages as you learn more about Java.

Table 3-2 lists a few examples.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Object Oriented Design
Finding Classes and Their Responsibilities

Finding the classes

Get written description of the problem
domain

Identify all nouns, each is a potential class

Refine list to include only classes relevant
to the problem

Identify the responsibilities

Things a class is responsible for knowing

Things a class is responsible for doing

Refine list to include only classes relevant
to the problem

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Object Oriented Design
Finding Classes and Their Responsibilities

Identify the responsibilities

Things a class is responsible for knowing

Things a class is responsible for doing

Refine list to include only classes relevant

to the problem

	Slide 1
	Slide 2: Topics
	Slide 3: Classes
	Slide 4: Strings as Objects
	Slide 5: Strings as Objects (cont’d)
	Slide 6: Strings as Objects (cont’d)
	Slide 7: Classes and Instances
	Slide 8: Classes and Instances (cont’d)
	Slide 9: Classes and Instances (cont’d)
	Slide 10: Access Modifiers
	Slide 11: Access Modifiers
	Slide 12: Access Modifiers
	Slide 13: Encapsulation
	Slide 14: Designing a Class
	Slide 15: UML Class Diagram
	Slide 16: Attributes
	Slide 17: Data Hiding
	Slide 18: Methods
	Slide 19: Methods
	Slide 20: Accessors and Mutators
	Slide 21: Accessors and Mutators
	Slide 22: Stale Data
	Slide 23: Stale Data
	Slide 24: UML Data Type and Parameter Notation
	Slide 25: UML Data Type and Parameter Notation
	Slide 26: UML Data Type and Parameter Notation
	Slide 27: UML Data Type and Parameter Notation
	Slide 28: Converting the UML Diagram to Code
	Slide 29: Converting the UML Diagram to Code
	Slide 30: Converting the UML Diagram to Code
	Slide 31: Class Layout Conventions
	Slide 32: A Driver Program
	Slide 33: A Driver Program
	Slide 34: Multiple Arguments
	Slide 35: Arguments Passed By Value
	Slide 36: Instance Fields and Methods
	Slide 37: Instance Fields and Methods
	Slide 38: Constructors
	Slide 39: Constructors
	Slide 40: The Default Constructor
	Slide 41: Constructors in UML
	Slide 42: The String Class Constructor
	Slide 43: The String Class Constructor
	Slide 44: The BankAccount Example
	Slide 45: Classes, Variables and Scope
	Slide 46: Shadowing
	Slide 47: Packages and import Statements
	Slide 48: Packages and import Statements
	Slide 49: Packages and import Statements
	Slide 50: Packages and import Statements
	Slide 51: Object Oriented Design Finding Classes and Their Responsibilities
	Slide 52: Object Oriented Design Finding Classes and Their Responsibilities

