
Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

C H A P T E R 4

Decision

Structures

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Topics

The if Statement

The if-else Statement

The PayRoll class

Nested if Statements

The if-else-if Statement

Logical Operators

Comparing String Objects

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Topics (cont’d)

More about Variable Declaration and

Scope

The Conditional Operator

The switch Statement

The DecimalFormat Class

The SalesCommission Class

Generating Random Numbers with the
Random Class

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The if Statement

The if statement decides whether a

section of code executes or not.

The if statement uses a boolean to

decide whether the next statement or

block of statements executes.

if (boolean expression is true)

execute next statement.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Flowcharts

• If statements can be modeled as a flow

chart.

Wear a coat.

YesIs it cold

outside?

if (coldOutside)

 wearCoat();

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Flowcharts (cont’d)

• A block if statement may be modeled

as:

Wear a coat.

YesIs it cold

outside?

Wear a hat.

Wear gloves.

if (coldOutside)

{

 wearCoat();

 wearHat();

 wearGloves();

}

Note the use of curly

braces to block several

statements together.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Relational Operators

• In most cases, the boolean expression, used

by the if statement, uses relational

operators.

Relational Operator Meaning

> is greater than

< is less than

>= is greater than or equal to

<= is less than or equal to

== is equal to

!= is not equal to

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Boolean Expressions

• A boolean expression is any variable or
calculation that results in a true or false
condition.

Expression Meaning

x > y Is x greater than y?

x < y Is x less than y?

x >= y Is x greater than or equal to y?

x <= y Is x less than or equal to y.

x == y Is x equal to y?

x != y Is x not equal to y?

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

if Statements and Boolean

Expressions
if (x > y)

System.out.println("X is greater than Y");

if(x == y)

System.out.println("X is equal to Y");

if(x != y)

{

System.out.println("X is not equal to Y");

x = y;

System.out.println("However, now it is.");

}

Example: AverageScore.java

AverageScore.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Programming Style and if

Statements
• An if statement can span more than one line;

however, it is still one statement.

if (average > 95)

 grade = ′A′;

is functionally equivalent to

if(average > 95) grade = ′A′;

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Programming Style and if

Statements (cont’d)
• Rules of thumb:

– The conditionally executed statement should be
on the line after the if condition.

– The conditionally executed statement should be
indented one level from the if condition.

– If an if statement does not have the block curly

braces, it is ended by the first semicolon
encountered after the if condition.
if (expression)

statement;

No semicolon here.

Semicolon ends statement here.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Having Multiple Conditionally-

Executed Statements

Conditionally executed statements can be grouped
into a block by using curly braces {} to enclose them.

If curly braces are used to group conditionally
executed statements, the if statement is ended by the
closing curly brace.

if (expression)

{

statement1;

statement2;

} Curly brace ends the statement.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Having Multiple Conditionally-

Executed Statements (cont’d)
Remember that when the curly braces are not
used, then only the next statement after the
if condition will be executed conditionally.

if (expression)

statement1;

statement2;

statement3;

Only this statement is conditionally executed.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Flags

A flag is a boolean variable that monitors some
condition in a program.

When a condition is true, the flag is set to true.

The flag can be tested to see if the condition has
changed.

if (average > 95)

highScore = true;

Later, this condition can be tested:
if (highScore)

System.out.println("That′s a high score!");

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Comparing Characters

Characters can be tested using the relational
operators.

Characters are stored in the computer using the
Unicode character format.

Unicode is stored as a sixteen (16) bit number.

Characters are ordinal, meaning they have an order
in the Unicode character set.

Since characters are ordinal, they can be compared
to each other.

char c = ′A′;

if(c < ′Z′)

System.out.println("A is less than Z");

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

if-else Statements

The if-else statement adds the ability to

conditionally execute code when the if

condition is false.

if (expression)

statementOrBlockIfTrue;

else

statementOrBlockIfFalse;

See example: Division.java

Division.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Payroll Class

Payroll

- hoursWorked : double

- payRate : double

+ Payroll()

+ setHoursWorked(hours : double) : void

+ setPayRate(rate : double): void

+ getHoursWorked() : double

+ getPayRate() : double

+ getGrossPay() : double

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

if-else Statement

Flowcharts

Wear a coat.

YesIs it cold

outside?

Wear shorts.

No

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Nested if Statements

If an if statement appears inside

another if statement (single or block)

it is called a nested if statement.

The nested if is executed only if the

outer if statement results in a true

condition.

See example: LoanQualifier.java

LoanQualifier.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Nested if Statement

Flowcharts

Wear a jacket.

YesIs it cold

outside?

Wear shorts.

Is it

snowing?

Wear a parka.

No

No Yes

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

if-else Matching

Curly brace use is not required if there

is only one statement to be

conditionally executed.

However, sometimes curly braces can

help make the program more readable.

Additionally, proper indentation makes

it much easier to match up else
statements with their corresponding if

statement.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

if-else Matching
if (employed == ′y′)

{

 if (recentGrad == ′y′)

 {

 System.out.println("You qualify for the " +

 "special interest rate.");

 }

 else

 {

 System.out.println("You must be a recent " +

 "college graduate to qualify.");

 }

}

else

{

 System.out.println("You must be employed to qualify.");

}

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

if-else-if Statements

if-else-if statements can become

very complex.

Imagine the following decision set.
if it is very cold, wear a heavy coat,

else, if it is chilly, wear a light jacket,

else, if it is windy wear a windbreaker,

else, if it is hot, wear no jacket.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

if-else-if Statements

if (expression)

statement or block

else if (expression)

statement or block

// Put as many else ifs as needed here

else

statement or block

Care must be used since else statements match up with the

immediately preceding unmatched if statement.

See example:

TestGrade.java, TestResults.java

TestGrade.java
TestResults.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

if-else-if Flowchart

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Logical Operators

Java provides two binary logical
operators (&& and ||) that are used to

combine boolean expressions.

Java also provides one unary (!) logical

operator to reverse the truth of a
boolean expression.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Logical Operators

Operator Meaning Effect

&& AND

Connects two boolean expressions into one. Both

expressions must be true for the overall expression to

be true.

|| OR

Connects two boolean expressions into one. One or

both expressions must be true for the overall

expression to be true. It is only necessary for one to be

true, and it does not matter which one.

! NOT

The ! operator reverses the truth of a boolean

expression. If it is applied to an expression that is

true, the operator returns false. If it is applied to an

expression that is false, the operator returns true.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The && Operator

The logical AND operator (&&) takes two operands
that must both be boolean expressions.

The resulting combined expression is true if (and
only if) both operands are true.

See example: LogicalAnd.java

Expression 1 Expression 2 Expression1 && Expression2

true false false

false true false

false false false

true true true

LogicalAnd.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The || Operator

The logical OR operator (||) takes two operands that
must both be boolean expressions.

The resulting combined expression is false if (and
only if) both operands are false.

Example: LogicalOr.java

Expression 1 Expression 2 Expression1 || Expression2

true false true

false true true

false false false

true true true

LogicalOr.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The ! Operator

The ! operator performs a logical NOT operation.

If an expression is true, !expression will be false.

if (!(temperature > 100))

System.out.println("Below the maximum temperature.");

If temperature > 100 evaluates to false, then the
output statement will be run.

Expression 1 !Expression1

true false

false true

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Short Circuiting

Logical AND and logical OR operations

perform short-circuit evaluation of

expressions.

Logical AND will evaluate to false as soon

as it sees that one of its operands is a

false expression.

Logical OR will evaluate to true as soon as

it sees that one of its operands is a true

expression.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Order of Precedence

The ! operator has a higher order of

precedence than the && and ||

operators.

The && and || operators have a lower

precedence than relational operators
like < and >.

Parenthesis can be used to force the

precedence to be changed.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Order of Precedence
Order of

Precedence
Operators Description

1 (unary negation) ! Unary negation, logical NOT

2 * / % Multiplication, Division, Modulus

3 + - Addition, Subtraction

4 < > <= >=
Less-than, Greater-than, Less-than or

equal to, Greater-than or equal to

5 == != Is equal to, Is not equal to

6 && Logical AND

7 || Logical NOT

8
= += -=

*= /= %=

Assignment and combined assignment

operators.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Comparing String Objects

In most cases, you cannot use the relational
operators to compare two String objects.

Reference variables contain the address of

the object they represent.

Unless the references point to the same

object, the relational operators will not return

true.

See example: GoodStringCompare.java

See example: StringCompareTo.java

GoodStringCompare.java
StringCompareTo.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Ignoring Case in String

Comparisons
In the String class the equals and

compareTo methods are case sensitive.

In order to compare two String

objects that might have different case,

use:

equalsIgnoreCase

compareToIgnoreCase

See example: SecretWord.java

SecretWord.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Variable Scope

In Java, a local variable does not have to be

declared at the beginning of the method.

The scope of a local variable begins at the

point it is declared and terminates at the end

of the method.

When a program enters a section of code

where a variable has scope, that variable has

come into scope, which means the variable

is visible to the program.

See example: VariableScope.java

VariableScope.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Conditional Operator

The conditional operator is a ternary (three
operand) operator.

You can use the conditional operator to write
a simple statement that works like an if-
else statement.

The format of the operators is:

expression1 ? expression2 : expression3

The conditional operator can also return a
value.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Conditional Operator

The conditional operator can be used
as a shortened if-else statement:
x > y ? z = 10 : z = 5;

This line is functionally equivalent to:
if(x > y)

z = 10;

else

z = 5;

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Conditional Operator

Many times the conditional operator is

used to supply a value.
number = x > y ? 10 : 5;

This is functionally equivalent to:
if(x > y)

number = 10;

else

number = 5;

See example: ConsultantCharges.java

ConsultantCharges.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The switch Statement

The if-else statement allows you to make

true / false branches.

The switch statement allows you to use an

ordinal value to determine how a program

will branch.

The switch statement can evaluate a char,

byte, short, int, or string value and make

decisions based on the value.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The switch Statement

The switch statement takes the form:
switch (testExpression)

{

case Value_1:

// place one or more statements here

break;

case Value_2:

// place one or more statements here

break;

// case statements may be repeated

//as many times as necessary

default:

// place one or more statements here

}

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The switch Statement

The testExpression is a variable or expression
that gives a char, byte, short, int or string value.

switch (testExpression)

{

…

}

The switch statement will evaluate the
testExpression.

If there is an associated case statement that
matches that value, program execution will be
transferred to that case statement.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The switch Statement

Each case statement will have a corresponding

case value that must be unique.

case value_1:

// place one or more statements here

break;

If the testExpression matches the case value, the

Java statements between the colon and the break

statement will be executed.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The case Statement

The break statement ends the case statement.

The break statement is optional.

If a case does not contain a break, then program

execution continues into the next case.

See example: NoBreaks.java

See example: PetFood.java

The default section is optional and will be

executed if no CaseExpression matches the

SwitchExpression.

See example: SwitchDemo.java

NoBreaks.java
PetFood.java
SwitchDemo.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The DecimalFormat Class

When printing out double and float values,

the full fractional value will be printed.

The DecimalFormat class can be used to

format these values.

In order to use the DecimalFormat class,

the following import statement must be

used at the top of the program:
import java.text.DecimalFormat;

See examples:

Format1.java, Format2.java, Format3.java, Format4.java

Format1.java
Format2.java
Format3.java
Format4.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The SalesCommission Class

SalesCommision

- sales : double

- rate : double

- commission : double

- advance : double

- pay : double

+ SalesCommission(s: double,

 a: double) :

- setRate() : void

-calculatePay() : void

+ getPay() : double

+ getCommission() : double

+ getRate() : double

+ getAdvance() : double

+ getSales() : double

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Method Decomposition
Using Private Methods

Long methods can be broken up into
shorter more specialized methods,
known as helper or utility methods.

Each method should perform a small,
well-defined task.

Sensitive tasks can be broken into
private methods.

Private methods are available only to
other methods within the class.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Main Programs

The SalesCommision class is a utility

class.

It provides an abstraction of the data

and methods needed to calculate a

sales commission.

The program that utilizes this class is

called the Main program.

Example: HalsCommission.java

HalsCommission.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Generating Random Numbers with the
Random Class

Some applications, such as games and

simulations, require the use of randomly

generated numbers.

The Java API has a class, Random, for this

purpose. To use the Random class, use the

following import statement and create an

instance of the class.

import java.util.Random;

Random randomNumbers = new Random();

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Some Methods of the Random

Class

Method Description

nextDouble() Returns the next random number as a double. The number

will be within the range of 0.0 and 1.0.

nextFloat() Returns the next random number as a float. The number

will be within the range of 0.0 and 1.0.

nextInt() Returns the next random number as an int. The number

will be within the range of an int, which is –2,147,483,648

to +2,147,483,648.

nextInt(int n) This method accepts an integer argument, n. It returns a

random number as an int. The number will be within the

range of 0 to n.

See examples: MathTutor.java, DiceDemo.java

MathTutor.java
MathTutor.java

	Slide 1
	Slide 2: Topics
	Slide 3: Topics (cont’d)
	Slide 4: The if Statement
	Slide 5: Flowcharts
	Slide 6: Flowcharts (cont’d)
	Slide 7: Relational Operators
	Slide 8: Boolean Expressions
	Slide 9: if Statements and Boolean Expressions
	Slide 10: Programming Style and if Statements
	Slide 11: Programming Style and if Statements (cont’d)
	Slide 12: Having Multiple Conditionally-Executed Statements
	Slide 13: Having Multiple Conditionally-Executed Statements (cont’d)
	Slide 14: Flags
	Slide 15: Comparing Characters
	Slide 16: if-else Statements
	Slide 17: The Payroll Class
	Slide 18: if-else Statement Flowcharts
	Slide 19: Nested if Statements
	Slide 20: Nested if Statement Flowcharts
	Slide 21: if-else Matching
	Slide 22: if-else Matching
	Slide 23: if-else-if Statements
	Slide 24: if-else-if Statements
	Slide 25: if-else-if Flowchart
	Slide 26: Logical Operators
	Slide 27: Logical Operators
	Slide 28: The && Operator
	Slide 29: The || Operator
	Slide 30: The ! Operator
	Slide 31: Short Circuiting
	Slide 32: Order of Precedence
	Slide 33: Order of Precedence
	Slide 34: Comparing String Objects
	Slide 35: Ignoring Case in String Comparisons
	Slide 36: Variable Scope
	Slide 37: The Conditional Operator
	Slide 38: The Conditional Operator
	Slide 39: The Conditional Operator
	Slide 40: The switch Statement
	Slide 41: The switch Statement
	Slide 42: The switch Statement
	Slide 43: The switch Statement
	Slide 44: The case Statement
	Slide 45: The DecimalFormat Class
	Slide 46: The SalesCommission Class
	Slide 47: Method Decomposition Using Private Methods
	Slide 48: Main Programs
	Slide 49: Generating Random Numbers with the Random Class
	Slide 50: Some Methods of the Random Class

