JAVA EARLY OBJECTS

FIFTH EDITION

CHAPTER S5

Loops and
Files

TONY GADDIS
Agdispn-V\(esEle%(

PEA RSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Topics

® The Increment and Decrement Operators
® The while Loop

® Using the while Loop for Input Validation
® The do-while Loop

® The for Loop

® Running Totals and Sentinel Values

® Nested Loops

® The break and continue Statements

@ Deciding Which Loop to Use

@ Introduction to File Input and Output

Addison-Wesley
is an imprint of

m Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Increment and Decrement
Operators

® There are numerous times where a variable

must simply be incremented or decremented.

number = number + 1;
number = number - 1;

@ Java provide shortened ways to increment
and decrement a variable’s value.

® Using the ++ or —- unary operators, this task
can be completed quickly.

number++; or ++number;
number--; or --number;

® Example: IncrementDecrement.java

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

IncrementDecrement.java

Differences Between Prefix
and Postfix

® When an increment or decrement are the
only operations in a statement, there is no
difference between prefix and postfix
notation.

® When used in an expression:

@ prefix notation indicates that the variable will be
Incremented or decremented prior to the rest of the
equation being evaluated.

@ postfix notation indicates that the variable will be
Incremented or decremented after the rest of the
equation has been evaluated.

® Example: Prefix.java

Addison-Wesley
is an imprint of

m Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Prefix.java

The while Loop

® Java provides three different looping structures.
® The while loop has the form:
while (condition)

{

statements;

}

® While the condition is true, the statements will
execute repeatedly.

® The while loop is a pretest loop, which means that it
will test the value of the condition prior to executing
the loop.

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The while Loop

® Care must be taken to set the condition to
false somewhere in the loop so the loop will
end.

® Loops that do not end are called infinite
loops.

® A while loop executes 0 or more times. If the
condition is false, the loop will not execute.

® Example: WhileLoop.]java

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

WhileLoop.java

The while loop Flowchart

A

true

statement(s)

v

false

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Infinite Loops

® In order for awhile loop to end, the
condition must become false. The following
loop will not end:

int x = 20;
while (x > 0)
{

System.out.println("x is greater than 0");

}

® The variable x never gets decremented so it
will always be greater than O.

® Adding the x-- above fixes the problem.

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Infinite Loops

@ This version of the loop
decrements x during each

iteration:

int x = 20;
while (x > 0)
{
System.out.println("x is greater than 0");

X--;

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Block Statements in Loops

® Curly braces are required to enclose
block statement while loops. (like block
if statements)

while (condition)

{
statement;
statement;,
statement;,
}

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The while Loop for Input
Validation

@ Input validation is the process of ensuring that user
Input is valid.
System.out.print ("Enter a number in the " +
"range of 1 through 100: ");
number = keyboard.nextInt() ;

// Validate the input.
while (number < 1 || number > 100)

{
System.out.println("That number is invalid.");

System.out.print ("Enter a number in the " +
"range of 1 through 100: ") ;

number = keyboard.nextInt();

}
® Example: SoccerTeams.java

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

SoccerTeams.java

The do-while Loop

® The do-while loop is a post-test loop, which means
It will execute the loop prior to testing the condition.

® The do-while loop (sometimes called a do loop)
takes the form:

do
{

statement (s) ;

}while (condition);

® Example: TestAveragel.java

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

TestAverage1.java

The do-while Loop Flowchart

statement(s)

|

true

false

v

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The for Loop

® The for loop is a pre-test loop.

® The for loop allows the programmer to

Initialize a control variable, test a condition,
and modify the control variable all in one line
of code.

® The for loop takes the form:
for(initialization; test; update)

{

statement (s) ;

}
® See example: Squares.java

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Squares.java

The for Loop Flowchart

A

statement(s) — | update

false

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Sections of The for Loop

@ The initialization section of the for loop
allows the loop to initialize its own control
variable.

® The test section of the for statement acts In

the same manner as the condition section of
awhile loop.

® The update section of the for loop Is the last
thing to execute at the end of each loop.

® Example: UserSquares.java

Addison-Wesley
is an imprint of

m Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

UserSquares.java

The for Loop Initialization

@ The initialization section of a for loop is
optional; however, it is usually provided.

® Typically, for loops initialize a counter
variable that will be tested by the test section
of the loop and updated by the update
section.

® The Initialization section can initialize
multiple variables.

® Variables declared in this section have scope
only for the for loop.

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Update Expression

® The update expression is usually used to
Increment or decrement the counter
variable(s) declared in the initialization
section of the for loop.

® The update section of the loop executes last
In the loop.

® The update section may update multiple
variables.

® Each variable updated is executed as if it
were on aline by itself.

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Modifying The Control

Variable

® You should avoid updating the control
variable of a for loop within the body

of the loop.

® The update section should be used to
update the control variable.
® Updating the control variable in the for

loop body leads to hard to maintain
code and difficult debugging.

is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Multiple Initializations and
Updates

® The for loop may initialize and update multiple variables.

for(int 1 = 5, int j

{

statement (s) ;

}

® Note that the only parts of a for loop that are mandatory are
the semicolons.

0; i < 10 || J < 20; i++, j+=2)

for(;;)
{

statement (s) ;
} // infinite loop

® |If left out, the test section defaults to true.

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Running Totals

® Loops allow the program to keep running
totals while evaluating data.

® Imagine needing to keep a running total of
user input.

® Example: TotalSales.]java

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

TotalSales.java

Sentinel Values

® Sometimes the end point of input data is not known.

® A sentinel value can be used to notify the program to
stop acquiring input.

@ If itis auserinput, the user could be prompted to

Input data that is not normally in the input data range
(i.e. =1 where normal input would be positive.)

® Programs that get file input typically use the end-of-
file marker to stop acquiring input data.

® Example: SoccerPoints.|ava

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

SoccerPoints.java

Nested Loops

® Like if statements, loops can be nested.

@ If aloop is nested, the inner loop will execute all of
Its iterations for each time the outer loop executes
once.

for(int 1 = 0; i < 10; i++)
for(int j = 0; j < 10; j++)
loop statements;

® The loop statements in this example will execute 100
times.

® Example: Clock.java

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Clock.java

o1
a

o1

The break Statement

ne break statement can be used to
onormally terminate a loop.

ne use of the break statement In

loops bypasses the normal
mechanisms and makes the code hard
to read and maintain.

@ It

IS considered bad form to use the

break statement in this manner.

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The continue Statement

® The continue statement will cause the
currently executing iteration of a loop to
terminate and the next iteration will begin.

® The continue statement will cause the
evaluation of the condition in while and for
loops.

® Like the break statement, the continue

statement should be avoided because it
makes the code hard to read and debug.

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Deciding Which Loops to Use

® The while looOp:

® Pretest loop

® Use it where you do not want the statements to
execute if the condition is false in the beginning.

® The do-while loOp:

® Post-test loop

® Use it where you want the statements to execute at
least one time.

® The for loop:

® Pretest loop

® Use it where there is some type of counting variable
that can be evaluated.

Addison-Wesley
is an imprint of

m Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

File Input and Output

® Reentering data all the time could get tedious
for the user.

® The data can be saved to afile.
@ Files can be input files or output files.

® Flles:
® Files have to be opened.
@ Data is then written to the file.
@ The file must be closed prior to program termination.

® In general, there are two types of files:
® binary
® text

Addison-Wesley
is an imprint of

m Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Writing Text To a File

® To open afile for text output you create
an instance of the PrintWriter class.

PrintWriter outputFile = new PrintWriter ("StudentData.txt");

T

Pass the name of the file that you
wish to open as an argument to the
PrintWriter constructor.

Warning: if the file already exists, it will be erased and replaced with a new file.

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The printwriter Class

® The PrintWriter class allows you to write data to a
file using the print and println methods, as you
have been using to display data on the screen.

® Just as with the System.out object, the println
method of the PrintWriter class will place a
newline character after the written data.

® The print method writes data without writing the
newline character.

Addison-Wesley
is an imprint of

m Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The printwriter Class

—— Open the file.

—PrintWriter outputFile = new PrintWriter ("Names.txt");
—outputFile.println ("Chris");

_soutputFile.println ("Kathryn");
—outputFile.println ("Jean") ;

outputFile.close () ; <

Close the file.

Write data to the file.

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The printwriter Class

® To use the PrintWriter class, put the
following import statement at the top

of the source file:

import java.io.¥*;

® See example: FileWriteDemo.java

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FileWriteDemo.java

Exceptions

® When something unexpected happens in a

Java

program, an exception is thrown.

® The method that is executing when the

exce
exce

otion IS thrown must either handle the
ption or pass it up the line.

® Hano
later.

ling the exception will be discussed

® To pass it up the line, the method needs a
throws clause in the method header.

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Exceptions

@ To insert a throws clause in a method
header, simply add the word throws and the
name of the expected exception.

® PrintWriter objects can throw an
IOException, SO we write the throws clause
like this:

public static void main(String[] args)
throws IOException

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Appending Text to a File

® To avoid erasing a file that already exists,
Create a FileWriter object in this manner:

FileWriter fw =
new FileWriter ("names.txt", true);

® Then, create a PrintWriter object in this
manner:

PrintWriter fw = new PrintWriter (fw) ;

Addison-Wesley
is an imprint of

m Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Specifying a File Location

® On a Windows computer, paths contain
backslash (\) characters.

® Remember, If the backslash is used in a
string literal, it Is the escape character
SO you must use two of them:

PrintWriter outFile =
new PrintWriter ("A:\\Pricelist.txt");

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Specifying a File Location

® This is only necessary if the backslash isin a
string literal.

@ If the backslash is in a String object then it
will be handled properly.

@ Fortunately, Java allows Unix style filenames
using the forward slash (/) to separate

directories:

PrintWriter outFile = new
PrintWriter ("/home/rharrison/names.txt") ;

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Reading Data From a File

® YOoUu use the File class and the
Scanner class to read data from a file:

Pass the name of the file as an

argument to the File class
constructor.

File myFile = new File("Customers.txt");

Scanner 1nputFile = new Scanner (myFile);

Pass the File object as an
argument to the Scanner
class constructor.

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Reading Data From a File

Scanner keyboard = new Scanner (System.in) ;
System.out.print ("Enter the filename: ");
String filename = keyboard.nextLine() ;
File file = new File(filename) ;

Scanner inputFile = new Scanner (file) ;

® The lines above:

® Creates an instance of the Scanner class to read from the
keyboard

® Prompt the user for a filename

® Get the filename from the user
® Create an instance of the File class to represent the file

® Create an instance of the Scanner class that reads from the file

Addison-Wesley
is an imprint of

m Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Reading Data From a File

® Once an instance of Scanner IS created, data can

be read using the same methods that you have
used to read keyboard input (nextLine, nextInt,

nextDouble, etc).

// Open the file.

File file = new File("Names.txt");
Scanner 1nputFile = new Scanner (file);
// Read a line from the file.

String str = 1nputFile.nextlLine();

// Close the file.
inputFile.close();

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Exceptions

® The Scanner class can throw an
IOException when a File object Is

passed to its constructor.

® S0, we put a throws IOException

clause in the header of the method that
Instantiates the Scanner class.

® See Example: ReadFirstLine.java

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

ReadFirstLine.java

Detecting The End of a File

® The Scanner class’s hasNext () method will return
true If another item can be read from the file.

// Open the file.

File file = new File(filename) ;
Scanner 1nputFile = new Scanner(file);
// Read until the end of the file.
while (i1nputFile.hasNext ())

{

String str = inputFile.nextLine();
System.out.println(str);

}

inputFile.close();// close the file when done.

® See example: FileReadDemo.java

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FileReadDemo.java

	Slide 1
	Slide 2: Topics
	Slide 3: The Increment and Decrement Operators
	Slide 4: Differences Between Prefix and Postfix
	Slide 5: The while Loop
	Slide 6: The while Loop
	Slide 7: The while loop Flowchart
	Slide 8: Infinite Loops
	Slide 9: Infinite Loops
	Slide 10: Block Statements in Loops
	Slide 11: The while Loop for Input Validation
	Slide 12: The do-while Loop
	Slide 13: The do-while Loop Flowchart
	Slide 14: The for Loop
	Slide 15: The for Loop Flowchart
	Slide 16: The Sections of The for Loop
	Slide 17: The for Loop Initialization
	Slide 18: The Update Expression
	Slide 19: Modifying The Control Variable
	Slide 20: Multiple Initializations and Updates
	Slide 21: Running Totals
	Slide 22: Sentinel Values
	Slide 23: Nested Loops
	Slide 24: The break Statement
	Slide 25: The continue Statement
	Slide 26: Deciding Which Loops to Use
	Slide 27: File Input and Output
	Slide 28: Writing Text To a File
	Slide 29: The PrintWriter Class
	Slide 30: The PrintWriter Class
	Slide 31: The PrintWriter Class
	Slide 32: Exceptions
	Slide 33: Exceptions
	Slide 34: Appending Text to a File
	Slide 35: Specifying a File Location
	Slide 36: Specifying a File Location
	Slide 37: Reading Data From a File
	Slide 38: Reading Data From a File
	Slide 39: Reading Data From a File
	Slide 40: Exceptions
	Slide 41: Detecting The End of a File

