
Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

C H A P T E R 6

A Second Look

at Classes and

Objects

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Topics

Static Class Members

Overloaded Methods

Overloaded Constructors

Passing Objects as Arguments to Methods

Returning Objects from Methods

The toString method

Writing an equals method

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Topics (cont’d)

Methods that copy objects

Aggregation

The this Reference Variable

Inner Classes

Enumerated types

Garbage Collection

Object collaboration

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Review of Instance Fields and

Methods
Each instance of a class has its own copy of

instance variables.

Example:

The Rectangle class defines a length and a width field.

Each instance of the Rectangle class can have different

values stored in its length and width fields.

Instance methods require that an instance of

a class be created in order to be used.

Instance methods typically interact with

instance fields or calculate values based on

those fields.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Static Class Members

Static fields and static methods do not

belong to a single instance of a class.

To invoke a static method or use a

static field, the class name, rather than

the instance name, is used.

Example:
double val = Math.sqrt(25.0);

Class name Static method

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Static Fields

Class fields are declared using the static keyword
between the access specifier and the field type.

private static int instanceCount = 0;

The field is initialized to 0 only once, regardless of
the number of times the class is instantiated.

Primitive static fields are initialized to 0 if no
initialization is performed.

Examples: Countable.java, StaticDemo.java

Countable.java
StaticDemo.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Static Fields

instanceCount field

(static)

3

Object1 Object3Object2

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Static Methods

Methods can also be declared static by placing the
static keyword between the access modifier and

the return type of the method.

public static double milesToKilometers(double miles)

{…}

When a class contains a static method, it is not

necessary to create an instance of the class in order

to use the method.

double kilosPerMile = Metric.milesToKilometers(1.0);

Examples: Metric.java, MetricDemo.java

Metric.java
MetricDemo.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Static Methods

Static methods are convenient because

they may be called at the class level.

They are typically used to create utility
classes, such as the Math class in the

Java Standard Library.

Static methods may not communicate

with instance fields, only static fields.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Overloaded Methods

Two or more methods in a class may have the same name;

however, their parameter lists must be different.

public class MyMath{

public static int square(int number){

return number * number;

}

public static double square(double number){

return number * number;

}

}

Example: OverloadingDemo.java

OverloadingDemo.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Overloaded Methods

Java uses the method signature (name,

type of parameters and order of

parameters) to determine which

method to call.

This process is known as binding.

The return type of the method is not

part of the method signature.

Example: Pay.java, WeeklyPay.java

Pay.java
WeeklyPay.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Overloaded Constructors

Class constructors are also methods.

This means that they can also be overloaded.

Overloading constructors gives

programmers more than one way to

construct an object of that class.

All of the previous restrictions on

overloading apply to constructors as well.

Example: Rectangle.java, TwoRectangles.java

Rectangle.java
TwoRectangles.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Revisiting The Default

Constructor
Java automatically provides a default

constructor for a class if a constructor

is not explicitly written.

The default constructor provided by

Java:

sets all numeric instance fields to 0

sets all char instance fields to ' ' (empty char)

sets all reference instance fields to null

sets all boolean instance fields to false

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Revisiting The Default

Constructor
We, as programmers, can provide a no-

arg constructor. This is a constructor

that accepts no arguments.

If a constructor that accepts arguments

is written, we should also write a no-arg

constructor.

If we write a no-arg constructor, we

should provide the initialization of all

instance fields.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Revisiting The Default

Constructor

InventoryItem

- description : String

- units : int

+ InventoryItem() :

+ InventoryItem(d : String) :

+ InventoryItem(d : String, u : int) :

+ setDescription(d : String) : void

+ setUnits(u : int) : void

+ getDescription() : String

+ getUnits() : int

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Passing Objects as

Arguments
Objects can be passed to methods as arguments.

Java passes all arguments by value.

When an object is passed as an argument, the value of the

reference variable is passed.

The value of the reference variable is an address or

reference to the object in memory.

A copy of the object is not passed, just a pointer to the

object.

When a method receives a reference variable as an

argument, it is possible for the method to modify the

contents of the object referenced by the variable.

Example: Dealer.java, Player.java, ChoHan.java

Pay.java
WeeklyPay.java
WeeklyPay.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Passing Objects as

Arguments
Examples:

PassObject.java

PassObject2.java

displayRectangle(box);

public static void displayRectangle(Rectangle r)

{

// Display the length and width.

System.out.println("Length: " + r.getLength() +

" Width: " + r.getWidth());

}

A Rectangle object

length:

width:

12.0

5.0

Address

PassObject.java
PassObject2.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Returning References From

Methods
Methods are not limited to returning the primitive
data types.

Methods can return references to objects as well.

Just as with passing parameters, a copy of the
object is not returned, only its address.

Example: ReturnObject.java

Method return type:

public static InventoryItem getData()

{

…

return new InventoryItem(d, u);

}

ReturnObject.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Returning Objects from

Methods
item = getData();

public static InventoryItem getData()

{

…

return new InventoryItem(d, u);

}

description:

units:

Pliers

address

A InventoryItem Object

25

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The toString Method

The toString method of a class can be
called explicitly:

Stock xyzCompany = new Stock ("XYZ", 9.62);

System.out.println(xyzCompany.toString());

However, the toString method does not
have to be called explicitly but is called
implicitly whenever you pass an object of the
class to println or print.

Stock xyzCompany = new Stock ("XYZ", 9.62);

System.out.println(xyzCompany);

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The toString method

The toString method is also called

implicitly whenever you concatenate an

object of the class with a string.

Stock xyzCompany = new Stock ("XYZ", 9.62);

System.out.println("The stock data is:\n" +

xyzCompany);

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The toString Method

All objects have a toString method that returns
the class name and a hash of the memory address
of the object.

We can override the default method with our own
to print out more useful information.

Examples: Stock.java, StockDemo1.java

Stock Class Phase 1/Stock.java
Stock Class Phase 1/StockDemo1.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The equals Method

When the == operator is used with reference

variables, the memory address of the objects

are compared.

The contents of the objects are not

compared.

All objects have an equals method.

The default operation of the equals method

is to compare memory addresses of the
objects (just like the == operator).

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The equals Method

The Stock class has an equals method.

If we try the following:

Stock stock1 = new Stock("GMX", 55.3);

Stock stock2 = new Stock("GMX", 55.3);

if (stock1 == stock2) // This is a mistake!

System.out.println("The objects are the same.");

else

System.out.println("The objects are not the same.");

only the addresses of the objects are compared

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The equals Method

Compare objects by their contents rather than by their memory
addresses.

Instead of simply using the == operator to compare two Stock
objects, we should use the equals method.

public boolean equals(Stock object2)

{

boolean status;

if(symbol.equals(Object2.symbol) &&

sharePrice == Object2.sharePrice)

status = true;

else

status = false;

return status;

}

See example: StockCompare.java

Stock Class Phase 2/StockCompare.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Methods That Copy Objects

There are two ways to copy an object.

You cannot use the assignment operator to
copy reference types

Reference only copy
This is simply copying the address of an object into
another reference variable.

Deep copy (correct)
This involves creating a new instance of the class
and copying the values from one object into the
new object.

Example: ObjectCopy.java

Stock Class Phase 3/ObjectCopy.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copy Constructors

A copy constructor accepts an existing object of the
same class and clones it.

public Stock(Stock object 2)

{

symbol = object2.symbol;

sharePrice = object2.sharePrice;

}

// Create a Stock object

Stock company1 = new Stock("XYZ", 9.62);

//Create company2, a copy of company1

Stock company2 = new Stock(company1);

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Aggregation

Creating an instance of one class as a

reference in another class is called

object aggregation.

Aggregation creates a “has a”

relationship between objects.

Examples:
Instructor.java, Textbook.java, Course.java, CourseDemo.java

Instructor.java
TextBook.java
Course.java
CourseDemo.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Aggregation in UML Diagrams

Course

- courseName : String

- Instructor : Instructor

- textBook : TextBook

+ Course(name : String, instr : Instructor, text : TextBook)

+ getName() : String

+ getInstructor() : Instructor

+ getTextBook() : TextBook

+ toString() : String

TextBook

- title : String

- author : String

- publisher : String

+ TextBook(title : String, author : String,

publisher : String)

+ TextBook(object2 : TextBook)

+ set(title : String, author : String,

publisher : String) : void

+ toString() : String

Instructor

- lastName : String

- firstName : String

- officeNumber : String

+ Instructor(lname : String, fname : String,

office : String)

+Instructor(object2 : Instructor)

+set(lname : String, fname : String,

office : String): void

+ toString() : String

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Returning References to

Private Fields
Avoid returning references to private

data elements.

Returning references to private

variables will allow any object that

receives the reference to modify the

variable.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Null References

A null reference is a reference variable that points to
nothing.

If a reference is null, then no operations can be
performed on it.

References can be tested to see if they point to null
prior to being used.

if(name != null)

System.out.println("Name is: " +

name.toUpperCase());

Examples: FullName.java, NameTester.java

FullName.java
NameTester.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The this Reference

The this reference is simply a name that an object
can use to refer to itself.

The this reference can be used to overcome
shadowing and allow a parameter to have the same
name as an instance field.

public void setFeet(int feet)

{

this.feet = feet;

//sets the this instance’s feet field

//equal to the parameter feet.

}

Local parameter variable

Shadowed instance variable

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The this Reference
The this reference can be used to call a constructor from
another constructor.

public Stock(String sym)

{

this(sym, 0.0);

}

This constructor would allow an instance of the Stock class to be
created using only the symbol name as a parameter.

It calls the constructor that takes the symbol and the price, using
sym as the symbol argument and 0 as the price argument.

Elaborate constructor chaining can be created using this
technique.

If this is used in a constructor, it must be the first statement in

the constructor.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Inner Classes

Classes my have other classes nested within

them.

These inner classes have unique properties.

An outer class can access the public

members of an inner class.

An inner class is not visible or accessible to

code outside the outer class.

An inner class can access the private

members of the outer class.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Inner Classes

Inner classes are defined inside the outer class.

Compiled byte code for inner classes is stored in a
separate file.

The file’s name consists of:

the name of the outer class

followed by a $ character

followed by the name of the inner class

followed by .class

RetailItem$CostData.class

Example: RetailItem.java, InnerClassDemo.java

RetailItem.java
InnerClassDemo.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Enumerated Types

Known as an enum

Requires declaration and definition like a class

Syntax:

enum typeName { one or more enum constants }

Definition:

enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY,

THURSDAY, FRIDAY, SATURDAY }

Declaration:

Day WorkDay; // creates a Day enum

Assignment:

Day WorkDay = Day.WEDNESDAY;

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Enumerated Types

An enum is a specialized class

Day.MONDAY

Day.TUESDAY

Day.WEDNESDAY

Day.SUNDAY

Day.THURSDAY

Day.FRIDAY

Day.SATURDAY

address

Each are objects of type Day, a specialized class

Day workDay = Day.WEDNESDAY;

The workDay variable holds the address of

the Day.WEDNESDAY object

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Enumerated Types - Methods
toString – returns name of calling constant

ordinal – returns the zero-based position of the constant in

the enum. For example the ordinal for Day.THURSDAY is 4

equals – accepts an object as an argument and returns true if

the argument is equal to the calling enum constant

compareTo - accepts an object as an argument and returns a

negative integer if the calling constant’s ordinal < than the

argument’s ordinal, a positive integer if the calling constant’s

ordinal > than the argument’s ordinal and zero if the calling

constant’s ordinal == the argument’s ordinal.

Examples:

EnumDemo.java, CarType.java, SportsCar.java, SportsCarDemo.java

EnumDemo.java
CarType.java
SportsCar.java
SportsCarDemo.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Enumerated Types -

Switching
Java allows you to test an enum constant with
a switch statement.

Example: SportsCarDemo2.java

SportsCarDemo2.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Garbage Collection

When objects are no longer needed

they should be destroyed.

This frees up the memory that they

consumed.

Java handles all of the memory

operations for you.

Simply set the reference to null and

Java will reclaim the memory.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Garbage Collection
The Java Virtual Machine has a process that runs in
the background that reclaims memory from released
objects.

The garbage collector will reclaim memory from any
object that no longer has a valid reference pointing to
it.

InventoryItem item1 = new InventoryItem ("Wrench", 20);

InventoryItem item2 = item1;

This sets item1 and item2 to point to the same object.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Garbage Collection

Address

An InventoryItem object

description:

units:

“Wrench”

20
item1

Addressitem2

Here, both item1 and item2 point to the same

instance of the InventoryItem class.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Garbage Collection

null

An InventoryItem object

description:

units:

“Wrench”

20
item1

Addressitem2

However, by running the command:

item1 = null;

only item2 will be pointing to the object.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Garbage Collection

null

An InventoryItem object

description:

units:

“Wrench”

20
item1

nullitem2

If we now run the command:

item2 = null;

neither item1 or item2 will be pointing to the object.

Since there are no valid references to this

object, it is now available for the garbage

collector to reclaim.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Garbage Collection

null

An InventoryItem object

description:

units:

“Wrench”

20
item1

nullitem2
The garbage collector reclaims the

memory the next time it runs in

the background.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The finalize Method

If a method with the signature:

public void finalize(){…}

is included in a class, it will run just prior to

the garbage collector reclaiming its memory.

The garbage collector is a background

thread that runs periodically.

It cannot be determined when the finalize

method will actually be run.

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Class Collaboration
Collaboration – two classes interact with
each other

If an object is to collaborate with another
object, it must know something about the
second object’s methods and how to call
them

If we design a class StockPurchase that
collaborates with the Stock class
(previously defined), we define it to create
and manipulate a Stock object

See examples: StockPurchase.java, StockTrader.java

StockPurchase Class/StockPurchase.java
StockPurchase Class/StockTrader.java

Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

CRC Cards
Class, Responsibilities and Collaborations (CRC)
cards are useful for determining and documenting a
class’s responsibilities

The things a class is responsible for knowing

The actions a class is responsible for doing

CRC Card Layout (Example for the Stock class)

Stock

Know stock to purchase Stock class

Know number of shares None

Calculate cost of purchase Stock class

Etc. None or class name

