JAVA EARLY OBJECTS

FIFTH EDITION

CHAPTER 7

Arrays and the
ArrayList

Class

TONY GADDIS
Agdispn-V\(esEle%(

PEA RSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Topics

@ Introduction to Arrays
® Processing Array Contents
® Passing Arrays as Arguments to Methods

® Some Useful Array Algorithms and
Operations

® Returning Arrays from Methods
® String Arrays
@ Arrays of Objects

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

@
@
@

Topics (cont’d)

The Sequential Search Algorithm
The Selection Sort and the Binary Search

Two-Dimensional Arrays

® Arrays with Three or More Dimensions

® Command-Line Arguments
® The ArrayList Class

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Introduction to Arrays

® Primitive variables are designed to
hold only one value at a time.

® Arrays allow us to create a collection
of like values that are indexed.

® An array can store any type of data
but only one type of data at a time.

® An array Is a list of data elements.

Addison-Wesley
is an imprint of

m Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Creating Arrays

® An array is an object so it needs an object reference.

// Declare a reference to an array that will hold integers.
int[] numbers;

® The next step creates the array and assigns Iits
address to the numbers variable

// Create a new array that will hold 6 integers.
numbers = new int[6];

0 0 0 0 0 0
index 0 index 1 index 2 index 3 index4 index 5

Array element values are initialized to O.
Array indexes always start at 0.

Addison-Wesley
is an imprint of

m Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Creating Arrays

@ It Is possible to declare an array
reference and create it In the same

statement.

int[] numbers = new int[6];

® Arrays may be of any type.

float[] temperatures = new float[100];
char[] letters = new char[41l];

long[] units = new long[50];

double[] sizes = new double[1200];

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Creating Arrays

® The array size must be a non-negative
number.

® It may be a literal value, a constant, or
variable.

final int ARRAY SIZE = 6;
int[] numbers = new int[ARRAY SIZE];

® Once created, an array size is fixed and
cannot be changed.

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Accessing the Elements of
an Array

20 0 0 0 0 0

numbers[0] numbers[1] numbers[2] numbers[3] numbers[4] numbers[5]

® An array Is accessed by:
® the reference name
@ a subscript that identifies which element in the
array to access.

numbers[0] = 20; // pronounced "numbers sub zero"

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Inputting and Outputting Array
Elements

® Array elements can be treated as any other
variable.

® They are simply accessed by the same name
and a subscript.

® See example: ArrayDemol.java

® Array subscripts can be accessed using
variables (such as for loop counters).

® See example: ArrayDemo?2.java

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

ArrayDemo1.java
ArrayDemo2.java

Bounds Checking

® Array indexes always start at zero and continue to
(array length - 1).

int values = new int[10];

®

This array would have indexes 0 through 9.
See example: InvalidSubscript.java

®

® In for loops, itis typical to use i, j, and k as
counting variables.

@ It might help to think of i1 as representing the word
iIndex.

Addison-Wesley
is an imprint of

m Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

InvalidSubscript.java

Off-by-One Errors

® It is very easy to be off-by-one when accessing
arrays.

// This code has an off-by-one error.
int[] numbers = new int[100];
i <= 100; i++)

for (int 1 = 1;
i] = 99;

numbers|

® Here, the equal sign allows the loop to continue on
to index 100, where 99 is the last index in the array.

® This code would throw an
ArrayIndexOutOfBoundsException.

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Array Initialization

® When relatively few items need to be initialized, an
Initialization list can be used to initialize the array.

int[]days = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

® The numbers in the list are stored in the array In
order:

® days[0] Is assigned 31
® days[1] Is assigned 28
® days[2] Is assigned 31
® days[3] Is assigned 30
& And so forth...
® See example: Arraylinitialization.java

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

ArrayInitialization.java

Alternate Array Declaration

® Previously we showed arrays being declared:
int[] numbers;
® However, the brackets can also go here:
int numbers|];

® These are equivalent but the first style is typical.

® Multiple arrays can be declared on the same line.
int[] numbers, codes, scores;
® With the alternate notation each variable must have
brackets.
int numbers|[], codes[], scores;

® The scores variable in this instance is simply an int
variable.

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Processing Array Contents

® Processing datain an array is the same as any other
variable.

grossPay = hours[3] * payRate;

® Pre and post increment works the same:

int[] score = {7, 8, 9, 10, 11};
++score[2]; // Pre-increment operation

score[4]++; // Post-increment operation

® See example: PayArray.java

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

PayArray.java

Processing Array Contents

® Array elements can be used In
relational operations:

if(cost[20] < cost[0])
{

// statements

}

® They can be used as loop conditions:

while (value[count] !'= 0)

{

// statements

}

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Array Length

® Arrays are objects and provide a public field named
length that is a constant that can be tested.

double[] temperatures = new double[25];

@ The length of this array is 25.

® The length of an array can be obtained via its
length constant.

int size = temperatures.length;

® The variable size will contain 25.

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The Enhanced for Loop

® Simplified array processing (read only)

® Always goes through all elements
® General:

for (datatype elementVariable : array)
statement,

® Example:
int[] numbers = {3, 6, 9};
for(int val : numbers)
{
System.out.println("The next value is " +

val) ;

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Array Size

® The length constant can be used in a
loop to provide automatic bounding.

Index subscripts start at 0 and end at one less than the

array length. / /

for(int i = 0; i < temperatures.length; i++)
{
System.out.println("Temperature " + 1 ": "

+ temperatures[i]);

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Array Size

® You can let the user specify the size of an array:

int numTests;
int[] tests;
Scanner keyboard = new Scanner (System.in) ;
System.out.print ("How many tests " +

"do you have? ") ;
numTests = keyboard.nextInt()
tests = new int[numTests];

® See example: DisplayTestScores.java

Addison-Wesley
is an imprint of

m Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

DisplayTestScores.java

Reassigning Array
References

® An array reference can be assigned to another array
of the same type.

// Create an array referenced by the numbers variable.
int[] numbers = new int[10];

// Reassign numbers to a new array.
numbers = new int[5];

® If the first (10 element) array no longer has a
reference to it, it will be garbage collected.

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Reassigning Array
References

The numbers variable

holds the address of an
int array.

Addison-Wesley
is an imprint of

int[] numbers = new int[10];

Address

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Reassigning Array
References

The numbers variable

holds the address of an
int array.

Addison-Wesley
is an imprint of

Address

The old 10 element array gets
marked for

garbage collection

numbers = new int[5];

REARON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Copying Arrays

® This is not the way to copy an array.
int[] arrayl = { 2, 4, 6, 8, 10 };
int[] array2 = arrayl; // This does not copy arrayl.

arrayl holdsan

address to the array ~ |2Address Example:

array?2 holds an SamEArra}/-_lava
Address

address to the array

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

SameArray.java

Copying Arrays

® You cannot copy an array by merely assigning
one reference variable to another.

® You need to copy the individual elements of one
array to another.

int[] firstArray = {5, 10, 15, 20, 25 };

int[] secondArray = new int[5];

for (int i = 0; i1 < firstArray.length; i++)
secondArray[i] = firstArray[i];

® This code copies each element of £irstArray to
each corresponding element of secondArray.

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Passing Array Elements to a
Method

® When a single element of an array is passed
to a method it is handled like any other
variable.

® See example: PassElements.|java

® More often you will want to write methods to
process array data by passing the entire
array, not just one element at a time.

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

PassElements.java

Passing Arrays as Arguments

® Arrays are objects.

® Their references can be passed to methods like any
other object reference variable.

showArray (numbers) ; 5110115]120125]130]|35]40

Address Example: PassArray.java

v
public static void showArray (int[] array)

{
for (int i1 = 0; i < array.length; i++)
System.out.print (array[i] + " ") ;

Addison-Wesley }
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

PassArray.java

Comparing Arrays
® The == operator determines only whether array
references point to the same array object.

® To compare the contents of an array:

int[] firstArray = { 2, 4, 6, 8, 10 };
int[] secondArray = { 2, 4, 6, 8, 10 };
boolean arraysEqual = true;
int 1 = 0;
if (firstArray.length != secondArray.length)
arraysEqual = false;
while (arraysEqual && i < firstArray.length)
{
if (firstArray[i] !'= secondArray[i])
arraysEqual = false;
i++;
}
if (arraysEqual)
System.out.println("The arrays are equal.");
else
Addison-Wesley System.out.println ("The arrays are not equal.");

is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Useful Array Operations

® Finding the Highest Value:

int [] numbers = new int[50];
int highest = numbers[O0];
for (int 1 = 1; i < numbers.length; i++)
{

if (numbers[i] > highest)

highest = numbers[i];
}
® Finding the Lowest Value:

int lowest = numbers|[0];
for (int i = 1; i < numbers.length; i++)
{
i1f (numbers[i] < lowest)
lowest = numbers|[i];

}

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Useful Array Operations

® Summing Array Elements:

int total = 0; // Initialize accumulator
for (int 1 = 0; i < units.length; i++)
total += units[i];

® Averaging Array Elements:

double total = 0; // Initialize accumulator

double average; // Will hold the average

for (int 1 = 0; i < scores.length; i++)
total += scores|[i];

average = total / scores.length;

® Example: SalesData.java, Sales.|ava

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

SalesData.java
Sales.java

Partially Filled Arrays

® Typically, if the amount of data that an array must hold is
unknown:
@ Size the array to the largest expected number of elements.

® Use a counting variable to keep track of how much valid data is in
the array.

int[] array = new int[100];

int count = 0;
System.out.print ("Enter a number or -1 to quit: ");
number = keyboard.nextInt() ;

while (number !'= -1 && count <= 99)
{

array[count] = number;

count++;

System.out.print ("Enter a number or -1 to quit: ");
number = keyboard.nextInt() ;

}

aadismwestey L11PUTL, number and keyboard were previously declared and keyboard
sanimeintot rafarences a Scanner object.

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Arrays and Files

® Saving the contents of an array to afile:

int[] numbers = {10, 20, 30, 40, 50};

PrintWriter outputFile = new PrintWriter
("Values. txt") ;

for (int 1 = 0; i < numbers.length; i++)
outputFile.println (numbers[i]) ;

outputFile.close() ;

Addison-Wesley
is an imprint of

W\l Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Arrays and Files

® Reading the contents of a file into an array:

final int SIZE = 5; // Assuming we know the size.
int[] numbers = new int[SIZE];
int 1 = 0;
File file = new File ("Values.txt");
Scanner inputFile = new Scanner (file) ;
while (inputFile.hasNext() && i < numbers.length)
{
numbers[i] = inputFile.nextInt() ;
i++;
}

inputFile.close() ;

Addison-Wesley
is an imprint of

m Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Returning an Array Reference

® A method can return a reference to an array.

® The return type of the method must be declared as
an array of the right type.

public static double[] getArray ()

{
double[] array = { 1.2, 2.3, 4.5, 6.7, 8.9 };
return array;

}

® The getArray method is a public static method that
returns an array of doubles.

® See example: ReturnArray.java

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

ReturnArray.java

String Arrays

@ Arrays are not limited to primitive data.
® An array of String objects can be created.:

String[] names = { "Bill", "Susan", '"Steven", "Jean" };
The names variable holds A String array is an array
the address to the array. of references to St ring objects.
Address
names[0] |address “Bill” Example:
names[1] |address “Susan” MonthDays.java
names[2] |address “Steven’]
names[3] [address “Jean”

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

MonthDays.java

String Arrays

@ If an initialization list is not provided, the new
keyword must be used to create the array:

String[] names = new String[4];

The names variable holds
the address to the array.

Address
names [0] null
names[1] null
names [2] null
names [3] null

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

String Arrays

® When an array is created in this manner, each
element of the array must be initialized.

The names variable holds

the address to the array.

names[0]
names|[1]
names|[2]
names|[3]

(14 T 29
Bill

“Susan”

“Steven’’

Address
names [0] null
names[1] null
names [2] null
names [3] null

“Jean”

Addison-Wesley
is an imprint of

m Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

"Bill";
"Susan'";
"Steven" ;
"Jean'" ;

Calling string Methods On Array
Elements

® String objects have several methods, including:
® toUpperCase
® compareTo
® equals
® charAt
® Each element of a String array is a String object.

® Methods can be used by using the array name and
Index as before.

System.out.println (names[0] . toUpperCase()) ;
char letter = names[3].charAt(0);

Addison-Wesley
is an imprint of

m Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The length Field & The 1length
Method

® Arrays have a final field named length.
® String objects have a method named length.

® To display the length of each string held in a String
array:

for (int i = 0; i < names.length; i++)
System.out.println(names[i].length()) ;

® An array’s lengthis afield
@® You do not write a set of parentheses after its name.
® A String’s lengthis a method

® You write the parentheses after the name of the
String class’s length method.

Addison-Wesley
is an imprint of

m Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Arrays of Objects

® Since strings are objects, we know that arrays can
contain objects.

InventoryItem[] inventory = new InventoryItem[5];

The inventory variable holds the address
of an InventoryItemarray.

Address

inventory[O] | null

inventory[1]| null

inventory[2]| null

inventory[3]| null

inventory[4]| null

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Arrays of Objects

® Each element needs to be initialized.
for (int 1 = 0; i < inventory.length; i++)

inventory[i] = new InventoryItem() ;
® Example: ObjectArray.java
_ _ description: |
The inventory variable holds the address units:
of an InventoryItemarray.
description: |
Address units:
_ description: | ‘7
inventory[0] | Address units:
inventory[1] | Address description: [
inventory[2] | Address /‘ units:
inventory[3] | Address description: | "
_ f units:
addisonWestey inventory[4] | Address

is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

ObjectArray.java

The Sequential Search
Algorithm

® A search algorithm is a method of locating a
specific item in a larger collection of data.

® The sequential search algorithm uses a loop
to:
@ sequentially step through an array,
® compare each element with the search value, and
@ stop when
@ the value is found or
@ the end of the array is encountered.

® See example: SearchArray.java

Addison-Wesley
is an imprint of

,PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

SearchArray.java

Selection Sort

® In a selection sort:

® The smallest value in the array is located and
moved to element O.

® Then the next smallest value Is located and
moved to element 1.

® This process continues until all of the
elements have been placed in their proper
order.

® See example: SelectionSortDemo.java

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

SelectionSortDemo.java

Binary Search

® A binary search:
@ requires an array sorted in ascending order.
@ starts with the element in the middle of the array.

® If that element is the desired value, the search iIs
over.

@ Otherwise, the value in the middle element is
either greater or less than the desired value

@ If it Is greater than the desired value, search in the
first half of the array.

® Otherwise, search the last half of the array.

® Repeat as needed while adjusting start and end
points of the search.
® See example: BinarySearchDemo.java

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

BinarySearchDemo.java

Two-Dimensional Arrays

® A two-dimensional array is an array of arrays.

@ It can be thought of as having rows and
columns.

column 0 column 1 column 2 column 3

row 0

row 1

row 2

row 3

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Two-Dimensional Arrays

® Declaring a two-dimensional array requires two
sets of brackets and two size declarators

® The first one is for the number of rows
® The second one is for the number of columns.

double[] [] scores = new double[3][4];

Two-dimensional array Rows Columns

® The two sets of brackets in the data type
Indicate that the scores variable will reference a
two-dimensional array.

® Notice that each size declarator is enclosed In
Its own set of brackets.

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Accessing Two-Dimensional

Array Elements

® When processing the data in a two-
dimensional array, each element has
two subscripts:
@ one for Its row
@ one for its column

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Accessing Two-Dimensional
Array Elements

The scores variable

holds the address of a
2D array of doubles.

Address

Addison-Wesley
is an imprint of

column O column 1 column 2 column 3
row O : scores[0][0] | scores[0][1] | scores[0][2] | scores[0][3]
row 1 | scores[1][0] | scores[1][1] | scores[1][2] | scores[1][3]
row 2 | scores[2][0] | scores[2][1] | scores[2][2] | scores[2][3]

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Accessing Two-Dimensional
Array Elements

The scores variable

holds the address of a
2D array of doubles.

Address

scores[2] [1] =

Accessing one of the elements in a two-dimensional
array requires the use of both subscripts.

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

column O column 1 column 2 column 3
row 0 : 0 0 0 0
row 1 0 0 0 0
row 2 o) 95 0 0

Accessing Two-Dimensional
Array Elements

® Programs that process two-dimensional
arrays can do so with nested loops.

e To fill the scores array: et of o not e

largest subscript

for (int row = 0; row < 3; row+t+) Number of

{ columns, not the
for (int col = 0; col < 4% col++) largestsubscript

{
System.out.print ("Enter a score: ");
scores[row] [col] = keyboard.nextDouble () ;

}
} keyboard references a

Scanner object

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Accessing Two-Dimensional

Array Elements
® To print out the scores array:

for (int row = 0; row < 3; row+t+)

{
for (int col = 0; col < 4; col++)
{
System.out.println(scores[row] [col]) ;
}
}

® See example: CorpSales.java

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

CorpSales.java

Initializing a Two-Dimensional
Array

@ Initializing a two-dimensional array requires
enclosing each row’s initialization list in its own set

of braces.

int[][] numbers = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} };

® Java automatically creates the array and fills its
elements with the initialization values.
erow0 ({1, 2,3}
erowl {4,5, 6}
e row2 {7,8, 9}

® Declares an array with three rows and three
columns.

Addison-Wesley
is an imprint of

,PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Initializing a Two-Dimensional
Array

The numbers variable int[][] numbers = {{1, 2, 3},
holds the address of a {4, 5, 6},
2D array of int values. {7, 8, 9}};
column 0 column 1 column 2
Address >
row 0 1 2 3
row 1 4 5 6
row 2 7 8 9
Addison-Wesley

is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The 1length Field

® Two-dimensional arrays are arrays of
one-dimensional arrays.

® The length field of the array gives the
number of rows In the array.

® Each row has a length constant tells
how many columns is in that row.

® Each row can have a different number
of columns.

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

The 1length Field

@ To access the 1length fields of the array:

int[][] numbers = { { 1, 2, 3, 4 },
{ 5,6, 71},

{9, 10, 11, 12 } };
v

for (int row = 0; row < numbers.length; row++)
{
for (int col = 0; col < numbers[row].length; col++)

System.out.println (numbers[row] [col]) ;
} \

Number of rows Number of columns in this row.
® See example: Lengths.java

The array can have variable length rows.

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Lengths.java

Summing The Elements of a
Two-Dimensional Array

int[][] numbers = { { 1, 2, 3, 4 },
{5, 6, 7, 8},
{9, 10, 11, 12} };
int total;
total = 0;
for (int row = 0; row < numbers.length; row++)
{
for (int col = 0; col < numbers[row].length; col++)
total += numbers[row] [col];

}

System.out.println("The total is " + total);

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Summing The Rows of a Two-
Dimensional Array

int[][] numbers = {{ 1, 2, 3, 4},
{5, 6, 7, 8},
{9, 10, 11, 12}};
int total;

for (int row = 0; row < numbers.length; row++)

{
total = 0;
for (int col = 0; col < numbers[row].length; col++)
total += numbers[row] [col];
System.out.println("Total of row "
+ row + " is " + total);
}

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Summing The Columns of a
Two-Dimensional Array

int[][] numbers = {{1, 2, 3, 4},

{5, 6, 7, 8},

{9, 10, 11, 12}};
int total;

for (int col = 0; col < numbers[0].length;col++)
{
total = 0;
for (int row = 0; row < numbers.length; row++)
total += numbers|[row] [col];
System.out.println("Total of column "
+ col + " is " + total);

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Passing
Dimensio

and Returning Two-
nal Array References

® Thereis no @

ifference between passing

a single or two-dimensional array as an
argument to a method.

® The method must accept a two-

dimensional
® See example

Addison-Wesley
is an imprint of

array as a parameter.
. Pass2Darray.java

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Pass2Darray.java

Ragged Arrays

® When the rows of a two-dimensional array
are of different lengths, the array is known
as aragged array.

@ You can create aragged array by creating
a two-dimensional array with a specific
number of rows, but no columns.

int [][] ragged = new int [4]][]:
® Then create the individual rows.

ragged[0] = new
ragged[l] = new
ragged[2] = new
ragged[3] = new

Addison-Wesley
is an imprint of

int [3];
int [4];
int [5];
int [6];

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

More Than Two Dimensions

® Java does not limit the number of dimensions that an
array may be.

® More than three dimensions is hard to visualize, but
can be useful in some programming problems.

row 0
row 1 --— page 2
-+— page 1
row 2
-— page 0
Addison-Wesley
is an imprint of column O column 1 column 2 column 3

PEA RSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Command-Line Arguments

® A Java program can receive arguments from
the operating system command-line.

® The main method has a header that looks
like this:

public static void main(String[] args)
® The main method receives a String array as
a parameter.

® The array that is passed into the args

parameter comes from the operating system
command-line.

Addison-Wesley
is an imprint of

m Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Command-Line Arguments

@ To run the example:

java CommandLine How does this work?
args|[0] is assigned "How"
args[l] is assigned "does"
args[2] is assigned "this"
args[3] is assigned "work?"

® Example: CommandLine.java

@ It is not required that the name of main’s
parameter array be args.

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

CommandLine.java

Variable-Length Argument

LiISts

® Special type parameter — vararg...

® vararg parameters are actually arrays
® Examples: VarArgsDemol.java, VarargsDemoZ2.java

public static int sum(int... numbers)
{
int total = 0; // Accumulator
// Add all the values in the numbers array.
for (int val : numbers)
total += wval;
// Return the total.
return total;

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

ArrayListDemo1.java
VarargsDemo2.java

The ArrayList Class

® Similar to an array, an ArrayList allows
object storage

® Unlike an array, an ArrayList object:

® Automatically expands when a new item is
added

® Automatically shrinks when items are removed
® Requires:
import java.util.Arraylist;

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Creating an ArrayList

ArraylList<String> namelist = new ArrayList<String>();

Y Y

@ Notice the word String written inside angled
brackets <>

® This specifies that the ArrayList can hold
String objects.

® If we try to store any other type of object Iin
this ArrayList, an error will occur.

Addison-Wesley
is an imprint of

m Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Using an ArrayList

@ To populate the ArrayList, use the add
method:

® namelist.add ("James") ;
® namelist.add("Catherine");

® To get the current size, call the size method
® namelist.size(); // returns 2

Addison-Wesley
is an imprint of

m Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Creating and Using an ArrayList

@ To access items in an ArrayList, use the
get method

namelList.get (1) ;

In this statement 1 is the index of the item to get.

® Example: ArrayListDemol.java

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

ArrayListDemo1.java

Creating and Using an
ArrayList

® You can use the enhanced for loop to
iterate over each item In an ArrayList.

// Create an ArrayList of names.

ArrayList<String> namelist = new ArrayList<String>();
namelList.add ("James") ;

namelList.add ("Catherine");

namelList.add ("Bill");

// Display the items in the ArrayList.
for (String name : namelist)
System.out.println (name) ;

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Using an ArrayList

® The ArrayList class's toString method returns a
string representing all items in the ArrayList

System.out.println (namelist);
This statement yields :
[James, Catherine]

® The ArrayList class's remove method removes
designated item from the ArrayList

namelist.remove (1) ;
This statement removes the second item.
® See example: ArrayListDemo3.java

Addison-Wesley
is an imprint of

m Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

ArrayListDemo3.java

Using an ArrayList

® The ArrayList class's add method with one
argument adds new items to the end of the ArrayList

® To Insertitems at a location of choice, use the add
method with two arguments:

namelList.add(l, "Mary");
This statement inserts the String "Mary" at index 1
® To replace an existing item, use the set method.:

nameList.set (1, "Becky");

This statement replaces “Mary” with “Becky”

® See example: ArrayListDemo4.java

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

ArrayListDemo4.java

Using an ArrayList

® An ArrayList has a capacity, which is the
number of items it can hold without
Increasing Its size.

® The default capacity of an ArrayListis 10
items.

® To designate a different capacity, use a
parameterized constructor:

ArrayList<String> list = new ArrayList<String>(100) ;

Addison-Wesley
is an imprint of

w Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Using an ArrayList

@ You can store any type of object in an
ArrayList

ArrayList<InventoryItem> accountList =
‘ new ArrayList<InventoryItem> () ;

|

This creates an ArrayList that can hold
InventoryItem objects.

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Using an ArrayList

// Create a listor to hold Inventoryltem objects.
ArrayList list = new ArrayList();

// Add three Inventoryltem objects to the ArrayList.
list.add (new InventoryItem("Nuts", 100));

list.add (new InventorylItem("Bolts", 150));

list.add (new InventoryItem("Washers", 75));

// Display each item.

for (int index = 0; index < list.size(); index++)
{
InventoryIltem item = (Inventoryltem)list.get (index);
System.out.println("Item at index " + index +
"\nDescription: " + item.getDescription() +
"\nUnits: " + item.getUnits());

See: ArrayListDemo6.java

Addison-Wesley
is an imprint of

PEARSON Copyright © 2015 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

ArrayListDemo6.java

	Slide 1
	Slide 2: Topics
	Slide 3: Topics (cont’d)
	Slide 4: Introduction to Arrays
	Slide 5: Creating Arrays
	Slide 6: Creating Arrays
	Slide 7: Creating Arrays
	Slide 8: Accessing the Elements of an Array
	Slide 9: Inputting and Outputting Array Elements
	Slide 10: Bounds Checking
	Slide 11: Off-by-One Errors
	Slide 12: Array Initialization
	Slide 13: Alternate Array Declaration
	Slide 14: Processing Array Contents
	Slide 15: Processing Array Contents
	Slide 16: Array Length
	Slide 17: The Enhanced for Loop
	Slide 18: Array Size
	Slide 19: Array Size
	Slide 20: Reassigning Array References
	Slide 21: Reassigning Array References
	Slide 22: Reassigning Array References
	Slide 23: Copying Arrays
	Slide 24: Copying Arrays
	Slide 25: Passing Array Elements to a Method
	Slide 26: Passing Arrays as Arguments
	Slide 27: Comparing Arrays
	Slide 28: Useful Array Operations
	Slide 29: Useful Array Operations
	Slide 30: Partially Filled Arrays
	Slide 31: Arrays and Files
	Slide 32: Arrays and Files
	Slide 33: Returning an Array Reference
	Slide 34: String Arrays
	Slide 35: String Arrays
	Slide 36: String Arrays
	Slide 37: Calling String Methods On Array Elements
	Slide 38: The length Field & The length Method
	Slide 39: Arrays of Objects
	Slide 40: Arrays of Objects
	Slide 41: The Sequential Search Algorithm
	Slide 42: Selection Sort
	Slide 43: Binary Search
	Slide 44: Two-Dimensional Arrays
	Slide 45: Two-Dimensional Arrays
	Slide 46: Accessing Two-Dimensional Array Elements
	Slide 47: Accessing Two-Dimensional Array Elements
	Slide 48: Accessing Two-Dimensional Array Elements
	Slide 49: Accessing Two-Dimensional Array Elements
	Slide 50: Accessing Two-Dimensional Array Elements
	Slide 51: Initializing a Two-Dimensional Array
	Slide 52: Initializing a Two-Dimensional Array
	Slide 53: The length Field
	Slide 54: The length Field
	Slide 55: Summing The Elements of a Two-Dimensional Array
	Slide 56: Summing The Rows of a Two-Dimensional Array
	Slide 57: Summing The Columns of a Two-Dimensional Array
	Slide 58: Passing and Returning Two-Dimensional Array References
	Slide 59: Ragged Arrays
	Slide 60: More Than Two Dimensions
	Slide 61: Command-Line Arguments
	Slide 62: Command-Line Arguments
	Slide 63: Variable-Length Argument Lists
	Slide 64: The ArrayList Class
	Slide 65: Creating an ArrayList
	Slide 66: Using an ArrayList
	Slide 67: Creating and Using an ArrayList
	Slide 68: Creating and Using an ArrayList
	Slide 69: Using an ArrayList
	Slide 70: Using an ArrayList
	Slide 71: Using an ArrayList
	Slide 72: Using an ArrayList
	Slide 73: Using an ArrayList

