

CS 2440

Computer Science II

Dr. Alice McRae
Dr. Dee Parks
Professors, Computer Science
Appalachian State University

2

Table of Contents

Introduction .. 4

Enumerated Types ... 6

Two-Dimensional Arrays .. 10

Big-Oh (Section 1.2) ... 20

Exceptions (Appendix C) .. 28

Graphical User Interfaces .. 38

The Object Class and its Methods (Sections 2.3, 2.4) 50

Specifications, Designs and Implementations --IntArrayBag (Section 3.2) 56

DoubleArraySeq (Section 3.3) ... 62

Inheritance (Sections 13.1, 5.1) ... 68

Abstract Classes and Interfaces (Sections 13.4, 5.5)....................................... 72

UML (Unified Modeling Language) Diagrams ... 74

Study List for 2440 Exam 1 .. 76

AbstractGame Class (Section 13.4) .. 78

Linked Lists (Sections 4.1, 4.2) ... 80

The IntNode Class from Our Textbook (Section 4.3) 86

Wari Game ... 90

The IntLinkedBag Class (Section 4.4) .. 92

The DoubleLinkedSeq Class (Section 4.5) .. 96

Generics (Sections 5.1-5.3) .. 102

Java Wildcards ..112

Iterators (Section 5.5) ... 114

Stacks (Sections 6.1, 6.2) ... 118

Implementations of Stacks (Section 6.3) ... 122

Stack Applications (Section 6.4) .. 126

Queues (Sections 7.1, 7.2) .. 130

Radix Sort ... 132

Queue Implementations (Section 7.3) ... 136

Exam 2 Study Guide .. 140

Recursion (Sections 8.1, 8.3) ... 142

Sequential and Binary Search (Section 11.1) .. 148

Quadratic Sorting Algorithms (Section 12.1) ... 154

Mergesort (Section 12.2) ... 158

3

Quicksort (Section 12.2) .. 164

Binary Trees (Sections 9.1, 9.2) ... 170

Binary Heap (Section 10.1) .. 174

HeapSort (Section 12.3) .. 178

Final Exam Study Guide .. 182

Homework: Two-dimensional Arrays ... 184

Homework: Big-oh Analysis .. 186

Homework: Exceptions ... 188

Homework: Bags and Sequences ... 189

Homework: Inheritance ... 194

Homework: Linked Lists #1 .. 196

Homework: Linked Lists #2 .. 198

Homework: DoubleLinkedSeq ... 200

Homework: Generics ... 202

Homework: Stack Applications .. 206

Homework: Queues ... 208

Homework: Recursion ... 210

Homework: Quadratic Sorting Algorithms .. 212

Homework: Quicksort ... 214

4

Introduction

These worksheets are meant to supplement, not replace, the course textbook. You should

use the worksheets by bringing them to class with you and taking notes on them. Each day,

your instructor will put a worksheet on the screen and use it as a guide to the discussion.

She will write on her copy as the discussion proceeds, and you should write on yours.

Later, when you are studying, you can go back over the worksheets and make sure you fully

understand the topics that were discussed.

You are encouraged to study with one or more other students in the course. Since each of

you will have the same worksheets, you will be able to more easily navigate the different

topics that are covered. You can refer to the page numbers and direct everyone in the

group to the same material.

Your instructor would appreciate any suggestions that you have for improving these

worksheets.

5

6

Enumerated Types

Enumerated types are simple types that you create to hold a limited number of values. The

simplest way to declare an enumerated type in Java is to use the keyword enum followed by

an identifier (by convention, start it with an uppercase letter) and a list of values, set off in

curly braces and delimited by commas. Place a semicolon at the end. The values are not

Strings (no quotes), and are treated like constants. By convention, use all uppercase for

the values.

Here is an example of an enumerated type named Month with values describing each of the

twelve months. The enumerated type is placed within a class that makes use of it.

Now you write an enumerated type for days of the week:

public enum day {

 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY,

SUNDAY

}

Once an enumerated type has been declared, you can declare fields, parameters, or local

variables of that type. Here are variables of type Month:

If the enum is public, and you want to declare variables of that type outside of the class, you
need to tell Java what class to find the enum in.

public class SomeClassUsingMonths
{
 public enum Month {
 JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE,
 JULY, AUGUST, SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER
 }

 // more code
}

 private Month favoriteMonth;
 private Month vacationMonth;
 private Month rainyMonth;

7

To assign one of the enumerated values to a variable of the enumerated type, use the enum

name and a dot before the value.

As you might suspect, you can declare and initialize a local variable in one step.

Now you declare a variable of your days of the week type and then assign it the value
Wednesday.

favoriteDay = Day.WEDNESDAY;

For every enumerated type, there is a method called values that returns an array whose
elements are the values of the enumerated types in the order in which they are listed in the
definition.

public class SomeOtherClass
{
 private SomeClassUsingMonths.Month birthdayMonth;

 // some other code
}

 // constructor
 public SomeClassUsingMonths(Month favorite)
 {
 favoriteMonth = favorite;
 vacationMonth = Month.JUNE;
 rainyMonth = Month.APRIL;
 }

 public static void main(String[] args)
 {
 Month[] monthArray = Month.values();

 for (Month m : monthArray)
 {
 System.out.println(m);
 }
 }

 Month temp = Month.MARCH;

8

The above code would produce this output:

All enumerated types automatically extend the Enum class. Thus all enumerated types

inherit several useful methods. We just saw one of them, values. Others are compareTo,

equals, ordinal, and toString.

This table shows descriptions of these methods taken from the Java 8 API at

http://docs.oracle.com/javase/8/docs/api/java/lang/Enum.html:

You can compare two enum objects with == or with equals and get the same result.

public final int compareTo(E o)

Compares this enum with the specified object for order. Returns a negative integer, zero, or a

positive integer as this object is less than, equal to, or greater than the specified object. Enum

constants are only comparable to other enum constants of the same enum type. The natural order

implemented by this method is the order in which the constants are declared.

public final boolean equals(Object other)

Returns true if the specified object is equal to this enum constant.

public final int ordinal()

Returns the ordinal of this enumeration constant (its position in its enum declaration, where the

initial constant is assigned an ordinal of zero). Most programmers will have no use for this method.

It is designed for use by sophisticated enum-based data structures, such

as EnumSet and EnumMap.

public String toString()

Returns the name of this enum constant, as contained in the declaration. This method may be

overridden, though it typically isn't necessary or desirable. An enum type should override this

method when a more "programmer-friendly" string form exists.

JANUARY
FEBRUARY
MARCH
APRIL
MAY
JUNE
JULY
AUGUST
SEPTEMBER
OCTOBER
NOVEMBER
DECEMBER

http://docs.oracle.com/javase/8/docs/api/java/lang/Enum.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Enum.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/8/docs/api/java/util/EnumSet.html
http://docs.oracle.com/javase/8/docs/api/java/util/EnumMap.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

9

Java is a bit inconsistent in this next piece of information, but if you use enumerated types

as the case values in a switch statement, you don’t use the enum name and a dot with the

case.

You can find more information on enumerated data types in the Head First Java book,

available on Safari through the Library’s web site, or online.

 if (favoriteMonth == Month.JUNE)
 System.out.println ("That is my favorite, too.");
 if (vacationMonth.equals(Month.AUGUST))
 System.out.println("I wish it was sooner!");

 switch (favoriteMonth) {
 case JANUARY:
 System.out.println ("Not in Boone.");
 break;
 case FEBRUARY:
 System.out.println ("Ah… Valentine Day's Month");
 break;
 // the rest
 }

10

Two-Dimensional Arrays

There are two steps to the creation of a two-dimensional (2-d) array: (1) declaring a
reference of the right type, and (2) allocating the actual array. The following code shows
the declaration of three references to 2-d arrays. The first line declares a reference to a 2-d
array of ints. The second line declares a reference to a 2-d array of chars, and the third
declares a reference to a 2-d array of objects of some class called Cell.

Show how to declare a reference to a 2-dimensional array of Strings called wordtable.

String [] [] wordtable;

Show how to declare a reference to a 2-dimensional array of QuiltSquare called quilt.

Quilt [][] QuiltSquare;

You can declare arrays with more than two dimensions if you choose:

When you declare a reference to a multi-dimensional array, you tell Java how many
dimensions the array will have (by including a pair of square brackets for each dimension)
but you do not specify the size of each of the dimensions. When you allocate the actual
array, however, you must tell Java the size of each dimension.

We think of a 2-d array as a table made of cells that are organized into rows and columns.
For example, here is how we picture a 2-d array with 3 rows and 5 columns:

Let's examine some code that allocates space for 2-d arrays. We specify the number of
rows in the first set of square brackets, and the number of columns in the second set.

 int [][] multiplicationTable;
 char [][] wordSearchPuzzle;
 Cell [][] mineSweeperGrid;

 int [][][] threeDTable;

 multiplicationTable = new int[10][10];
 wordSearchPuzzle = new char[numRows][numColumns];

 // create cells with borders around the edge
 mineSweeperGrid = new Cell[rows+2][columns+2];

11

Create the wordtable, whose reference you declared before, and give it 3 rows and 4
columns.

Wordtable = new string[3][4];

Create the quilt of QuiltSquare so that is twice as long as it is wide. Use a variable called
width that contains the desired number of squares in the width of the quilt. Make the
length the first dimension.

QuiltSquare = new quilt[width][width * 2];

If we wish, we can create a multi-dimensional array one dimension at a time starting with
the rows. We could, for example, create the wordSearchPuzzle array like this:

Draw a picture to illustrate what a 2-d array is really like when it is allocated in memory.
Your instructor will show you what to draw.

 // create an array to hold numRows char arrays
 wordSearchPuzzle = new char[numRows][];
 for (int i = 0; i < numRows; i++)
 {
 // create each row to hold numCols chars
 wordSearchPuzzle[i] = new char[numCols];
 }

12

Using this technique, you can also create “jagged” arrays. The array allocated below has
four rows. The first row has 6 cells, the next one has 10, the next one has 5, and the last
one has 7. Draw a picture of the array below the code.

Look back at the wordSearchPuzzle definition above. The value of
wordSearchPuzzle.length is the length of the first dimension (the number of rows). In
this case, wordSearchPuzzle.length is whatever numRows was when the table was
created. The value of wordSearchPuzzle[3].length would be the length of the third row
(row numbers begin at 0), in this case numCols.

In the jaggedArray created above, what would be the value of jaggedArray.length?

What would be the value of jaggedArray[2].length? ________

Which of the following would be valid entries in the jaggedArray table? Circle valid ones.

jaggedArray[0][5] jaggedArray[4][2]

jaggedArray[1][10] jaggedArray[3][9]

jaggedArray[2][3] jaggedArray[0][0]

You may initialize a 2-dimensional array when you declare it. Place each row’s column
values in braces, using a comma as a delimiter both between column values and rows.

Draw the table, words, based on the initialization given:

 int[][] jaggedArray = new int[4][];

 jaggedArray[0] = new int[6];
 jaggedArray[1] = new int[10];
 jaggedArray[2] = new int [5];
 jaggedArray[3] = new int [7];

 String [][] words = {{"dog", "cat", "squirrel"}, {"pig", "goat", "elephant"}};

13

Nested loops are often used to process a multi-dimensional array. In the following
method, the outer for loop is advancing i over the rows, and the inner for loop is advancing
j over the columns of each row. Show the results of the method on the wordTable drawn
below:

 j=0 j=1 j=2 j=3
i=0
i=1
i=2

Show what the following method would print if we call it on the above array:

 public void fillTable(String[][] wordtable)
 {
 for (int i = 0; i < wordtable.length; i++)
 {
 for (int j = 0; j < wordtable[i].length; j++)
 {
 if (i < j)
 {
 wordtable[i][j] = "cat";
 }
 else if (i > j)
 {
 wordtable[i][j] = "dog";
 }
 else
 {
 wordtable[i][j] = "ox";
 }
 }
 }
 }

 public void printTable(String[][] wordtable)
 {
 for (int i = 0; i < wordtable.length; i++)
 {
 for (int j = 0; j < wordtable[i].length; j++)
 {
 System.out.println(wordtable[i][j]);
 }
 }
 }

14

As you process two-dimensional tables with nested loops, consider the following placement
of code.

Rewrite the printTable method above so that the output looks like a neat table with row
and column headings.

If the code inside the loop gets complicated, create separate methods to handle parts of the
job.

 public void processTable(String[][] table)
 {
 // code to be done before or at the start of the whole table
 for (int i = 0; i < table.length; i++)
 {
 // code to be done at the start of each row
 for (int j = 0; j < table[i].length; j++)
 {
 // code to be done for each entry in the table
 }
 // code to be done at the end of each row
 }
 // code to be done after the table is processed
 }

15

Here are some examples that illustrate how to send actual parameters to methods that
handle parts of 2-dimensional arrays. The examples illustrate (1) how to send a reference
to the entire table as an actual parameter to a method, (2) how to send a reference to a row
as an actual parameter to a method, and (3) how to send the contents of a cell as an actual
parameter to a method.

Here are examples that show how to declare the formal parameters of methods that receive
references (1) to entire 2-dimensional arrays, (2) to rows of 2-dimensional arrays (which
are nothing more than single dimension arrays), and (3) to elements (which are nothing
more than a variable of the array’s type).

Now let's write some methods that work with 2-dimensional arrays. Write an int method
called countPositives that takes as an input parameter a 2-dimensional array of int and
returns the count of all the positive integers (those > 0) in the array.

 public void processTable(String[][] table)
 {
 // method to process a whole table of Strings
 }

 public void processRow(String[] words)
 {
 // method to process a single array (one row) of Strings
 }

 public void processElement(String word)
 {
 // method to process a single String
 }

 processTable(wordtable); // send whole table

 processRow(wordtable[2]); // send row 2

 processElement(wordTable[i][j]); // process element wordTable[i][j]

16

Write a method that prints a 2-dimensional array of integers as a table. At the end of each
row, also print the average of the row. Put a couple of extra spaces before the average and
place a heading “AVERAGE” over the average column. Just guess at the spacing for this
method.

Write an int method, findLargestRow, which takes as input a 2-dimensional array of
double and returns the index of the row that has the largest sum.

17

Write an int method, productDiagonal, which has a square 2-dimensional array of
integers as a parameter and returns the product of the main diagonal. The main diagonal
refers to the entries where row == column. When you declare the variable that you will use
for the product, initialize it to 1, not 0. Can you solve this with a single for loop?

Suppose you have a 2-dimensional 8 x 8 array, called table. Draw a little sketch of such a
table below.

Suppose x and y are integers with values in the range [1,6]. Suppose you wished to refer to
the four “neighbors” of table[x][y] (neighbors are above, below, to the left, and to the
right).

The position directly above table[x][y] is table[____] [____].

The position directly below table[x][y] is table[____][____].

The position directly left of table[x][y] is table[____][____].

The position directly right of table[x][y] is table[____][____].

18

Write a method, countIsolatedZeros, which takes a 2-dimensional integer array as a
parameter and returns the number of zeros that have no neighbors (above, below, left, or
right) that are also zeros. It may be helpful to have a helper method that determines if
indices are valid. For example, indicesValid could take as input a 2-dimensional integer
array and two integer parameters for a row and column, and return true if the indices refer
to a valid position in the table.

If you create an array of objects, you are really creating an array of references to objects.
Each reference in the array is initialized to null by default. You can traverse the array with
nested loops and create the objects themselves, assigning the array references to point to
the objects. Can you guess what the code below is doing? Draw the first two rows of the
chessboard array and enter the appropriate values.

 Square[][] chessBoard = new Square[8][8];
 String[] color = {"red","black"};
 for(int i = 0; i < chessBoard.length; i++)
 {
 for(int j = 0; j < chessboard[i].length; j++)
 {
 // assume Square constructor expects color
 chessboard[i][j] = new Square(color[(i+j)%2]);
 }
 }

19

20

Big-Oh (Section 1.2)

Big-oh notation is used to measure of the efficiency of algorithms. It is not the only
measure used, but it is the most common measure used. The big-oh of an algorithm is
used to predict how the time (or space) of an algorithm grows as the size of the input data
grows. It represents a growth rate.

We can calculate the big-oh of any mathematical function g(n), written O(f(n)), where f(n)
refers to the largest order term in the function g(n). We do not specify the constant
associated with the term.

Key ideas of big-oh:

1. The big-oh of the function: 4𝑛13 − 2𝑛10 + 𝑛2 is O(n13).

2. If the biggest term is a constant (with no reference to the size n), the function is O(1), a

constant function.

3. If the function makes use of two variables, we can specify the big-oh with two variables:

4m + 3n is O(m+n). Function: 7mn –m – 3n is O(mn).

4. The following are considered bad form for big-oh:

a. Bad form: O(3n2). // Do not use the constant: O(n2) is better.

b. Bad form: O(
𝑛

2
). // Again, do not use the constant: O(n) is better.

c. Bad form: O(n2+n). // Only use the high order term: O(n2) is better.

d. Less bad form: O(log2n) // Better to use just O(log n). You will see the first form in

some books. One log base is a constant times another log base, for bases greater

than 1 (e.g., log2n is approximately 3.3219 * log10n).

Compute the big-oh of the following functions:

1. g(n) = 4n3 – 3n2 + 5n4 _______n^4_________

2. g(n) = 12 + 2log2n _____logn___________

3. g(n) = 4n + nlog3n + 2n ______nlogn__________

The following big-oh notations are not in the best form. Correct them.

1. O(3n2) ______n^2__________

2. O(
𝑛

2
) ______n__________

3. O(n2 + n) _____n^2___________

4. O(log2n) _______logn_________

Actually, big-oh is an upper bound. When we say that a function is O(n3), for example, we
are saying that the growth rate is less than or equal to some constant times n3. So, 4n13 −

21

2n10 + n2 is also O(n14), or O(n100) for that matter. But, the closer we are to getting the
“real” high-order term, the more information we are giving. For example, suppose
someone wanted to know how long it takes on average to get to Asheville from Boone by
car. One could say:

1. “It takes less than 10 minutes.”

2. “It takes less than 2 hours.”

3. “It takes less than 8 hours.”

Statements 2 and 3 are both correct, but statement 2 is more helpful. Statement 1 is
WRONG, though. If you are not sure if a function has a high-order term of n2 or n3, you
will be correct in saying O(n3), though perhaps you are not as informative as you could be.
You might be wrong with O(n2). It is better to be less informative than to be wrong.

Suppose we have written an algorithm and implemented it in Java. Now we want to know
how efficient our algorithm is. How fast is it going to run? This is a hard question. Some
computers are faster than other computers. Some compilers translate to more efficient
code than other compilers. We need a way to measure the efficiency of the algorithm, not
the efficiency of the computer or the compiler. Big-oh is the way we do this.

Consider the following three functions. They are all O(_____).

T1(n) = 4n3 – 200n2 + 5n +20
T2(n) = 0.06n3 + 2n2 - n - 50
T3(n) = 2n3 + 104n2 – 1000

The three functions were evaluated for five values of n, and the table below shows the
results. When a function is O(n3), it doesn't take very big values of n to get very large
running times, whatever the constants might be.

Function n=100 n=200 n=400 n=500 n=1000
T1(n) 2,000,520 24,001,020 224,002,020 450,002,520 3,800,050,200
T2(n) 75,850 559,750 4,159,550 7,999,450 61,998,950
T3(n) 3,039,000 20,159,000 144,639,000 275,999,000 2,103,999,000

Consider the following ratios between a given function at one size and that same function
at half that size. Look across the bottom row of ratios. Even though the exact functions
(T1, T2, and T3) are quite different, the fact that they all share n3 as a high-order term
means that their growth rates are similar as n gets larger and larger.

T1(200)/T1(100) = 11.9 T2(200)/T2(100) = 7.38 T3(200)/T3(100) = 6.634

T1(400)/T1(200) = 9.3 T2(400)/T2(200) = 7.43 T3(400)/T3(200) = 7.17

T1(1000)/T1(500) = 8.4 T2(1000)/T2(500) = 7.75 T3(1000)/T3(500) = 7.6

22

Recall that T1(n) = 4n3 – 200n2 + 5n +20. As n gets bigger, the lower order term do not
affect the growth rate much. We can approximate T1(100,000) as 4 × (100,000)3. We can
approximate T1(200,000) as 4 × (200,000)3. Notice what happens in the following ratio:

4(200,000)3

4(100,000)3

The constant 4 cancels. The ratio is 8. Notice that in the calculations of the ratios, as n got
bigger all three of the O(n3) functions got closer and closer to 8 when the input size
doubled.

Using Big-Oh to Predict Running Times

If we are given the big-oh of a function, and we know the function evaluation at one size,
we can approximate the evaluation at a different size, even if we don’t know the other
terms or the constant. Suppose we are told that our function T has a big-oh of O(f(n)). We
are told that the function evaluates to answer1 when n = size1. We want to predict the
answer when n = size2. Here is a formula by which we can do that prediction.

 f(size2)

answer2 ------------ × answer1
 f(size1)

Examples:

1. An algorithm is O(n2). The running time is 50 units when n = 10,000. Predict the

running time when n = 30,000.

Solution: f(n) = n2, size1 = 10,000, size2 = 30,000, answer1 = 50. We solve for
answer2:

𝑎𝑛𝑠𝑤𝑒𝑟2 =
(30,000)2

(10,000)2
× 50 =

30,000 × 30,000

10,000 × 10,000
× 50 = 450

FYI: Functions that are O(n2) are called quadratic functions. When you double the size
of the input, the running time should go up 22 or 4 times. When you triple the size of
the input, the running time should go up 32 or 9 times.

2. An algorithm is O(n3). The running time is 50 units when n = 10,000. Predict the
running time when n = 30,000.

Solution: f(n) = n3, size1 = 10,000, size2 = 30,000, answer1 = 50. We solve for
answer2:

𝑎𝑛𝑠𝑤𝑒𝑟2 =
(30,000)3

(10,000)3
× 50 =

30,000 × 30,000 × 30,000

10,000 × 10,000 × 10,000
× 50 =

23

FYI: Functions that are O(n3) are called cubic functions. When you double the size of
the input, the running time should go up 23 or 8 times. When you triple the size of the
input, the running time should go up 33 or 27 times.

3. A function is O(n). The running time is 50 units on size 10,000. Predict the running
time on input of size n = 30,000.

FYI: Functions that are O(n) are called linear functions. They seem to make the most
sense. When the input size doubles, the running time doubles. When the input triples,
the running time triples.

4. A function is O(log n). The running time is 50 units on size 10,000. Predict the
running time on n = 30,000. The first time that you do the arithmetic, use log10 on
your calculator. Then do the arithmetic with ln (loge) on your calculator. Finally, do it
with log2. If your calculator does not do log base 2, you can use log 10. To determine
log2 x, calculate log10 x / log10 2.

𝑎𝑛𝑠𝑤𝑒𝑟2 =
log10 30,000

log10 10,000
× 50 =

𝑎𝑛𝑠𝑤𝑒𝑟2 =
ln 30,000

ln 10,000
× 50 =

𝑎𝑛𝑠𝑤𝑒𝑟2 =
log2 30,000

log2 10,000
× 50 =

Now you see why the base of the logarithm doesn't matter. The ratios stay the same.
Functions that are O(log n) are called logarithmic functions. They do not grow very fast
at all! If you want to see the running time double, you need to pick an input size that is
some constant to a power of n, and then pick that same constant to a power of 2n for
the second size. For example, try input size 10,000 = 104, and input size 100,000,000
= 108.

24

5. A function is O(2n). The running time is 50 units on size 50. Predict the running time
on size 100.

𝑎𝑛𝑠𝑤𝑒𝑟2 =
2100

250
× 50 = 2100−50 × 50 =

Now predict the running time on an input just one larger, n = 51.

FYI: Functions that have the variable n in the exponent are called exponential
functions. They grow very fast. Note that when you added just one element to the
input, the running time doubles!

6. A function is O(1). The running time is 50 units on input size 10,000. Predict the time
on size 100,000.

𝑎𝑛𝑠𝑤𝑒𝑟2 =
1

1
× 50 =

FYI: Functions with a constant as the high order term are called constant functions. It
doesn't matter what the size of the input is. The running time stays the same.

25

Class Experiment

In the first lab, you used the algorithm labeled "Algorithm 2" below to shuffle a deck of
cards. "Algorithm 1" below also correctly shuffles a deck of cards but its big-oh complexity
is different. Here are the two algorithms:

Algorithm 1 Pseudocode:
1. One at a time, add the ints 0 through n-1, in order, to an ArrayList of Integer.
2. for (int i = 0; i < n-1; i++) {
3. index1 = choose a random number between 0 and n-1.
4. x = remove the Integer at position index1 in the ArrayList.
5. index2 = choose a random number between 0 and n-1.
6. add Integer x at position index2 in the list.
7. }

Algorithm 2 Pseudocode:
1. One at a time, add the ints 0 through n-1, in order, to an ArrayList of Integer.
2. for (int i = n-1; i > 0; i--) {
3. index1 = choose a random number between 0 and i
4. x = get Integer at position index1
5. y = get Integer at position i
6. set the Integer at position i to y
7. set the Integer at position index1 to x
8. }

These algorithms are implemented on the student machine. Your instructor will show you
where you can find them and will run them for you during class. The implementations will
allow you to choose the data size for n and will report running times. Choose some
running times and see if you can figure out the big-oh complexity of each of the algorithms.
Note that if you choose a size that is too small, your running time will be reported as 0.
Choose a larger size.

Algorithm 1
Size
Run Time

Big-Oh: _______________

Algorithm 2
Size
Run Time

Big-Oh: _______________

26

When you want to figure out the big-oh of an algorithm, you want to determine the high-
order term of the number of steps the algorithm will take. Sometimes figuring out the big-
oh can require lots of advanced mathematics, often involving probability. There are
computer science journals that deal with the complexity of algorithms. There are
algorithms for which the high-order term for the number of steps is not known, but
researchers have been able to prove upper bounds. So the calculation of big-oh can be
complicated.

For us, however, there are some rules of thumb that we can use that usually give us a good
guess for the big-oh complexity of an algorithm. It is amazing how often this good guess is
correct.

Rules of Thumb to Guess the Complexity:

1. Statements unaffected by the input size are constant. Examples: Simple assignment

statements, comparisons and arithmetic.

2. Be careful: One line of code is not necessarily a constant. For example the line might
call a method that is not constant; check out the complexity of the method.

3. Consecutive blocks of code: Add together the complexities of the blocks. The result is
the same as the largest block.

4. If statements: Choose the largest complexity among the conditions (which is usually
constant), and the largest complexities of all the possible if/then/else blocks. Note,
here is one place we could overestimate. A more mathematical analysis might show that
the worst case won’t happen.

5. Loop: Multiply the number of iterations of the loop by the complexity inside the loop.
While loops may be particularly hard to determine. Try to argue some upper bound if
you are not sure how many iterations the loop will have.

6. Be aware: It is easy to overestimate a loop, especially if there is an if statement inside
the loop and, by multiplying, we are counting the worst case of the if statement at each
iteration.

7. Nested loops: Multiply the big-oh of the code inside the loops by the numbers of
iterations of each nested loop. Again this may overestimate, especially if we repeatedly
are too high on the number of iterations.

See how well you do at figuring out the big-oh of the six algorithms on the next page.

27

public int alg1 (int n)
{
 int steps = 0;
 for (int i = 0; i < n; i++)
 {
 steps++;
 }
 return steps;
}

public int alg2 (int n)
{
 int steps = 0;
 for (int i = 0; i < n; i++)
 {
 for (int j =0; j < n*n; j++)
 {
 steps++;
 }
 }
 return steps;
}

public int alg3 (int n)
{
 int steps = 0;
 for (int i = 0; i < n; i++)
 {
 for (int j =0; j < i; j++)
 {
 steps++;
 }
 }
 return steps;
}

public int alg4 (int n)
{
 int steps = 0;
 for (int i = 0; i < n; i++)
 {
 for (int j = 0; j < n; j++)
 {
 steps++;
 }
 }
 return steps;
}

public int alg5 (int n)
{
 int steps = 0;
 for (int i = 0; i < n; i++)
 {
 for (int j =0; j < i*i; j++)
 {
 for (int k = 0; k < j; k++)
 {
 steps++;
 }
 }
 }
 return steps;
}

public int alg6 (int n)
{
 int steps = 0;
 for (int i = 0; i < n; i++)
 {
 for (int j =0; j < i*i; j++)
 {
 steps++;
 if (j % i == 0)
 {
 for (int k = 0; k < j; k++)
 {
 steps++;
 }
 }
 }
 }
 return steps;
}

28

Exceptions (Appendix C)

In section 2.1 of our textbook, the author tells us that the goal of chapter 2 "is to be able to
write general-purpose classes that can be used by many different programs." Most of the
material in chapter 2 was covered in CS 1, but exceptions were not. The rest of this
handout deals with exceptions and how they are used in general-purpose classes.

When you write applications programs for yourself, you generally know how you want to
treat bad input data. For example, if the user enters bad data, perhaps you print an error
message and allow him or her to enter the data again.

When you write classes that are used by other programmers and your code encounters
errors in the data it receives, it is better to tell the outside code that an error occurred and
let the other program decide exactly how to handle the error. Java exceptions provide the
mechanism for doing this. Your code notifies the outside code that an error occurred by
throwing an exception. The programmer who writes the outside code needs to know that
your code might throw an exception so he or she can design the outside code to properly
catch any exceptions that are thrown.

We will first examine how you can throw exceptions from your code, and then how you
should write any code that calls on other classes that might throw exceptions. First, let's
see what exceptions actually are.

Exception is a subclass of a class called Throwable. Exception has many subclasses of
its own. One particular subclass is called RuntimeException and it has many of its own
subclasses. Throwable objects are categorized into two groups: (1) Errors,
RuntimeExceptions, and subclasses of RuntimeExceptions (these are called
"unchecked" exceptions and are gray in the picture), and (2) Exceptions and subclasses of
Exception other than RuntimeException (these are called "checked" exceptions). We
will come back to this distinction later in this section.

29

Throwing Exceptions

Take a look at one of the constructors in the ArrayList class. ArrayList is a library class
that is used by thousands of programmers around the world. When a programmer
declares a new ArrayList, he or she can specify the size of the list that is desired. Of
course a negative size makes no sense. If the constructor detects that a negative size has
been requested, it throws an IllegalArgumentException. IllegalArgumentException
is one of the subclasses of RuntimeException.

127 public ArrayList(int initialCapacity) {

128 super();

129 if (initialCapacity < 0)

130 throw new IllegalArgumentException("Illegal Capacity: "+

131 initialCapacity);

132 this.elementData = new Object[initialCapacity];

133 }

On line 129 the constructor checks to see if its parameter is negative, and if it is then a new
object of type IllegalArgumentException is created. The constructors of Exception
classes can take a string as a parameter. This string will be printed to the output if the
exception is thrown. Such strings help other programmers understand what went wrong.

When we get to chapter 3, we will write a class called DoubleArraySeq. This is a container
class for doubles and it keeps the doubles in an array. Here is one of the constructors for
that class:

 /**
 * Initializes an empty sequence with the specified initial capacity.
 *
 * @postcondition This sequence is empty and has an initial capacity of
 * initialCapacity.
 *
 * @param initialCapacity
 * initial size of the array
 * @throws OutOfMemoryError
 * if there is insufficient memory for: new
 * double[initialCapacity].
 * @throws IllegalArgumentException
 * if initialCapacity is negative
 */
 public DoubleArraySeq(int initialCapacity)
 throws OutOfMemoryError, IllegalArgumentException
 {
 // TODO
 if (initialCapacity < 0)
 {
 throw new IllegalArgumentException(
 "initialCapacity is negative: " + initialCapacity);
 }
 data = new double[initialCapacity];
 manyItems = 0;
 currentIndex = 0;
 }

30

Notice that the constructor checks its parameter and throws an IllegalArgument-
Exception if the parameter is negative. Also notice that in the Javadoc comment above
the constructor, it is pointed out that the constructor might also throw an
OutOfMemoryError. Any time that you request space for an object by using the new
keyword, it is possible to have no more space in RAM and to have Java throw this Error.
Look back at the hierarchy of Throwable objects and you will see that Error is a subclass
of Throwable. Most of the time programmers don't explicitly point out that their methods
might encounter the OutOfMemoryError, but our author makes all such possibilities very
explicit in his code because he is trying to educate us.

There is another difference between the constructor in ArrayList and the constructor in
our author's DoubleArraySeq class, and that is the use of the word throws after the
parameter list of the constructor. If a constructor or method throws a checked exception,
the compiler insists that we make that possibility known by using a throws clause. If we
do not declare our checked exceptions in this way, the code will not compile. It is not
mandatory, however, to have this throws clause in the DoubleArraySeq constructor
because one of the possible objects being thrown is an Error and the other is a subclass of
RuntimeException (an unchecked exception). It is not wrong to use a throws clause for
unchecked exceptions and errors – just not required. The reason we say that some
exceptions are "checked" is because the compiler mandates how we are to deal with them
and checks to be sure that we do. It will not compile our code if we break the rules. There
are other rules for managing checked exceptions as we shall see.

For practice, write a statement that throws an IndexOutOfBoundsException if the int
index has a value that is not in the range [0, numArray.length -1]. Make the message
of the exception be "Invalid index: " followed by the value of the variable, index.

Making Up New Exception Types

Note that you can make up your own Exception classes if you want, although this need is
rare. You can extend Exception if you want to make your new exception type be checked
by the compiler, or you can extend RuntimeException if you want to create an unchecked
exception type. You don't need any methods in your new class, only two constructors. You
need a default constructor and one that takes a String as a parameter. Each constructor
simply calls the superconstructor. The one with the String parameter passes that String
on up to the superconstructor.

31

Here is an example of a new exception called DoesNotFollowDirectionsException:

Handling Exceptions

Now we need to discuss how we should write code that calls methods that might throw
exceptions. In order to know whether a method might throw an exception or not, you have
to look at the documentation for that method. The Java API for the Scanner class includes
the following documentation for one of the constructors:

We can see that the constructor can throw both a FileNotFoundException and an
IllegalArgumentException. Now we need to know whether those exceptions are
checked or unchecked. So we look each of them up in the API. At the top of the
FileNotFoundException page we see this:

public class DoesNotFollowDirectionsException extends RuntimeException
{
 public DoesNotFollowDirectionsException() {
 super();
 }

 public DoesNotFollowDirectionsException(String message) {
 super(message);
 }
}

32

Looking at the inheritance hierarchy we see that FileNotFoundException is a subclass of
IOException, which is a subclass of Exception. So FileNotFoundException is a
checked exception.

At the top of the IllegalArgumentException page we see this:

Here we note that IllegalArgumentException is a subclass of RuntimeException and
is, thus, unchecked.

It is not bad practice to deal with both checked and unchecked exceptions in the same way,
but the rules described below are mandatory for checked exceptions. Before we get to
those rules, note that if you do not deal with an unchecked exception in your code, and that
exception gets thrown at runtime, your program will crash. An error message will print to
the console that shows that the exception occurred.

There are two ways to deal with a checked exception that might get thrown by a method
that your code calls: (1) put the risky code into a try block, and put a catch block after the
try block that will catch and deal with the exception if it gets thrown, or (2) mark the
method that contains the risky code with a throws clause (after the parameter list) and let
any thrown exception propagate to your method's caller. You should do the first if you
know how to deal with the exception, and you should do the second if you don't. You can
actually write code that does both of these things. You can put the risky code into a try
block followed by a catch block that partially deals with the exception and then does its
own throw to send the exception on up the runtime chain of method calls.

Try and Catch Blocks

If a method is going to deal with a potential exception internally, the line of code that could
generate the exception is placed inside a try block. There might be other code inside
the try block, before and/or after the risky line(s). Any code that depends upon the risky
code's success should be in the try block, since it will automatically be skipped if the
exception occurs.

try

{

 risky code and code that depends on the risky code succeeding

}

There is usually at least one catch block immediately after the try block. A catch block
must specify what type of exception it will catch.

33

catch (ExceptionClassName exceptionObjectName)

{

 code using methods from ExceptionClassName

}

There can be more than one catch block, each one marked for a specific exception class.
The exception class that is caught can be any class in the exception hierarchy, either a
general (base) class, or a very specific (derived) class. You should put the more specific
catch blocks first since the first applicable catch block will be the one that gets used and
the others will be skipped. The catch block(s) must handle all checked exceptions that
the try block is known to throw unless you want to let the exception propagate back to the
method that called your method.

It is possible to have a try block without any catch blocks if you have a finally block,
but any checked exceptions still need to be caught, or the method needs to declare that it
throws them. We will cover finally later in this section.

If an exception occurs within a try block, execution jumps to the first catch block whose
exception class matches the exception that occurred (Java uses an instanceof test). Any
steps remaining in the try block are skipped. If no exception occurs, then the catch
blocks are skipped. The catch blocks will also be skipped if an exception that is not caught
occurs, such as a RuntimeException, or an exception that the method declared it throws.

If you declare a variable within a try block, it will not exist outside the try block, since the
curly braces define the scope of the variable. You will often need that variable later, if
nowhere else other than the catch or finally blocks, so you would need to declare the
variable before the try.

If you declare but don't initialize a variable before a try block, and the only place you set a
value for that variable is in the try block, then it is possible when execution leaves
the try/catch structure that the variable never received a value. So, you would get a
"possibly uninitialized value" error message from the compiler, since it actually keeps track
of that sort of thing. Usually this happens with object references; you would generally
initialize them to null.

The following program will print the first result, and then fail while performing the
division for the second equation. Execution will jump to the catch block to print our
message on the screen. Note: ArithmeticException is one of the exceptions that you are
not required to catch, but you can still catch it if you wish.

34

File I/O Exceptions

Most methods in the I/O classes throw IOException, which is a checked exception that
you are required to handle. Much of the time, however, your code will not be able to deal
with a file I/O exception locally and you will be better off letting the exception propagate
(just using a throws declaration). For example, if you are writing code that relies on
something like a file name being passed to it from outside your class and your code
receives an invalid file name, you can't know what the correct file name should have been.
So you pass the exception on to your caller and let that caller catch it and correct the error.

Using Multiple Catch Blocks

It is possible that a statement might throw more than one kind of exception. You can list a
sequence of catch blocks, one for each possible exception. Remember that there is an
object hierarchy for exceptions. Since the first one that matches is used and the others
skipped, you should put a subclass class first and its parent class later. You will actually get

public class ExceptionTest {
 public static void main(String[] args) {
 int i, j, x = 5, y = 5, z = 0;
 try {
 i = x/y;
 System.out.println("x/y = " + i);
 j = x/z;
 System.out.println("x/z = " + j);
 }
 catch(ArithmeticException e) {
 System.out.println("Arithmetic Exception!");
 System.out.println(e.getStackTrace());
 }
 System.out.println("Done with test");
 }
}

35

a compiler error if you list a parent class before a child class, as you have "unreachable
code." In this example, the code in the try block could throw NumberFormatException
during the parsing, and ArithmeticException while doing the division, so we have catch
blocks for those specific cases. The more generic Exception would catch other problems,
although in this case it isn't possible to cause any other type of exception.

Guaranteeing Execution of Code – The Finally Block

To guarantee that a chunk of code runs, whether or not an exception occurs, use a finally
block after the try/catch blocks. There may be only one finally block and it must be
last. The code in the finally block will almost always execute. If an exception causes a
catch block to execute, the finally block will be executed after the catch block. If an
uncaught exception occurs, the finally block executes and then execution exits the
method and the exception is thrown to the method that called this method. If either the
try block or a catch block executes a return statement, the finally block executes
before control leaves the method. If either the try block or a catch block calls
System.exit, the finally block will not execute. If a finally block executes a return
while an uncaught exception is pending, the exception is stifled; that is, it just disappears.

import javax.swing.JOptionPane;

public class MultiCatchTest {

 public static void main(String[] args)
 {
 int n1, n2;
 try
 {
 n1 = Integer.parseInt(JOptionPane.showInputDialog("Enter a number"));
 n2 = Integer.parseInt(JOptionPane.showInputDialog("Enter a number"));
 System.out.println(n1 + " / " + n2 + " = " + n1/n2);
 }
 catch (NumberFormatException e)
 {
 System.out.println("Number Format Exception occurred");
 }
 catch (ArithmeticException e)
 {
 System.out.println("Divide by Zero Exception occurred");
 }
 catch (Exception e)
 {
 System.out.println("General Exception occurred");
 }
 }
}

36

Here is an interesting piece of code to run. It illustrates much of what we have discussed in
this section. We will run it during class.

import javax.swing.JOptionPane;

public class FinallyTest {
 public static void main(String[] args) {
 System.out.println("Returned value is " + go());
 }

 public static int go() {
 int choice = 0;
 try {
 String name = JOptionPane.showInputDialog("Enter your name: ");
 System.out.println("MENU:");
 System.out.println("1 - normal execution");
 System.out.println("2 - uncaught ArithmeticException");
 System.out.println("3 - return from try block");
 System.out.println("4 - call System.exit");
 System.out.println(
 "5 - return 5 from finally after ArithmeticException");
 System.out.println(
 "6 - return 6 from finally after try returns -1");
 System.out.println("X - catch NumberFormatException");
 choice = Integer.parseInt(JOptionPane.showInputDialog("Enter your choice: "));

 if (choice == 1) System.out.println("Hello " + name);
 else if (choice == 2) System.out.println("1 / 0 = " + 1/0);
 else if (choice == 3) return 3;
 else if (choice == 4) System.exit(1);
 else if (choice == 5) System.out.println("1 / 0 = " + 1/0);
 else if (choice == 6) return -1;
 }
 catch (NumberFormatException e) {
 System.out.println("Number Format Exception occurred");
 }
 finally {
 System.out.println("Goodbye from finally block");
 if (choice == 5) return 5;
 if (choice == 6) return 6;
 }
 return 0;
 }
}

37

38

Graphical User Interfaces

Unless you make graphical user interfaces (GUIs) frequently, you will probably have to
look up some of the details of their construction every time you make one. Concentrate on
remembering the big concepts of building GUIs and don't try to memorize every detail.

Let's label some parts so that we have common terminology.

39

Swing

Swing is a toolkit used for making graphical user interfaces. It is part of Oracle's Java
Foundation Classes (JFC), which is an API for making GUIs. Swing was developed to take
the place of the Abstract Window Toolkit (AWT), which was platform-specific. Swing is
platform-independent. The Swing classes and components are contained in the
javax.swing package.

General Idea

The general idea of building a GUI with Swing is to do the following:

1. Declare and allocate a JFrame. This is the window. Set the properties you want
your window to have.

2. Organize the components of your GUI into categories. For each category, declare

and allocate a JPanel. Decide on a layout manager for each JPanel and use it to add
the components to the JPanel.

3. Decide on a layout manager for the JFrame and use it to add the JPanels to the
JFrame.

40

4. Create and add listeners to the components that require them.

Java Tutorials

If you want to learn a lot about building GUIs (and I encourage this!), study the Java
Tutorials online at http://docs.oracle.com/javase/tutorial/uiswing/index.html.

Layout Managers

There are numerous layout managers in JavaFX. Study them in the tutorials. Here are
brief descriptions of a few.

• FlowLayout: This is the default layout manager for JPanels. It places components
left to right and centers them within the panel. It allows them to move (flow) when
the user resizes the window.

41

 public void actionPerformed(ActionEvent e)
 {
 ...//code that reacts to the action...
 }

• BorderLayout: The window is divided into five areas. You can add components to
any of the five parts.

• BoxLayout: This is a more flexible version of FlowLayout.

• CardLayout: This is a more complicated layout that allows two or more components
to share the same display space. It allows the user to choose between the
components using a menu.

Events

Swing components can fire events. Buttons fire events when they get clicked by a user, for
example. In order to have your GUI detect when a component has fired an event, you need
to add an event listener to the component.

Java Listeners

There are many listeners in the Java API. Each of them is an interface with a small
number of methods that need to be implemented in order to implement the interface. The
interface we will use for the GUIs we build in 2440 is called ActionListener.

ActionListener

The ActionListener interface specifies that you implement one method called
actionPerformed with this signature:

We will use a button as the component we want to listen to, since this is what the GUI you
build in lab will need to do. In order to give a button the functionality you want it to have,
you have to create a new Java class that implements the ActionListener interface. You then
have to create an object of this new type and add it to the button using the button's
addActionListener method.

42

There are three ways to do this, and we will discuss each of them below.

1. Have the GUI class itself implement ActionListener.
2. Put an inner class inside your GUI class that implements ActionListener.
3. Use an anonymous inner class.

GUI Class Implements ActionListener

Inner Class

43

Anonymous Inner Class

44

45

46

47

48

49

50

The Object Class and its Methods (Sections 2.3, 2.4)

Most of this section comes from docs.oracle.com/tutorial/java/IandI/objectclass.html.

Object as a Superclass

The Object class, in the java.lang package, sits at the top of the class hierarchy tree.
Every class is a descendant, direct or indirect, of the Object class. Every class you use or
write inherits the instance methods of Object. You need not use any of these methods,
but, if you choose to do so, you may need to override them with code that is specific to your
class. The methods inherited from Object that are discussed in this section are:

• protected Object clone() throws CloneNotSupportedException
 Creates and returns a copy of this object.

• public boolean equals(Object obj)
 Indicates whether some other object is "equal to" this one.

• protected void finalize() throws Throwable

 Called by the garbage collector on an object when garbage collection
 determines that there are no more references to the object

• public final Class getClass()
 Returns the runtime class of an object.

• public int hashCode()
 Returns a hash code value for the object.

• public String toString()
 Returns a string representation of the object.

Note: There are some subtle aspects to a number of these methods, especially the clone
method.

clone

If a class, or one of its superclasses, implements the Cloneable interface, you can use the
clone method to create a copy of an existing object. To create a clone, you write:

aCloneableObject.clone();

Object's implementation of this method checks to see whether the object on which clone
was invoked implements the Cloneable interface. If the object does not, the method
throws a CloneNotSupportedException. If you write a clone method to override the one
in Object, it must be declared as

protected Object clone() throws CloneNotSupportedException

 or:
public Object clone() throws CloneNotSupportedException

If an object on which clone is invoked does implement the Cloneable interface, Object's
implementation of the clone method creates an object of the same class as the original

51

object and initializes the new object's member variables to have the same values as the
original object's corresponding member variables.

The simplest way to make your class cloneable is to add "implements Cloneable" to your
class's declaration. Then your objects can invoke the clone method in the Object class.

For some classes, the default behavior of Object's clone method works just fine. If,
however, an object contains a reference to an external object, say ObjExternal, you may
need to override clone to get correct behavior. Otherwise, a change in ObjExternal made
by one object will be visible in its clone also. This means that the original object and its
clone are not independent—to decouple them, you must override clone so that it clones
the object and ObjExternal. Then the original object references ObjExternal and the
clone references a clone of ObjExternal, so that the object and its clone are truly
independent.

The following code is taken from our textbook's Location class. The clone method here is
an override of the clone method in Object. Our author declares a new Location
reference called answer. Then in a try block he attempts to use the clone method in
Object to make a clone of the activating Location object. If that fails, it's because the
"implements Cloneable" clause was forgotten at the top of the Location class. This
seems a bit silly since it's likely that the same person writing the clone method also wrote
the rest of the Location class, but on large software projects this makes sense. The
missing clause would be discovered if some programmer on the project attempted to make
a clone of a Location object.

Note that the usual behavior of the above method is to use the clone method in Object to
create a copy of the activating Location object and return it to the caller. For any class
with fields that are not references to external objects, this type of clone method is
sufficient.

In the next chapter we begin to implement container classes – classes similar to
ArrayList, in that they are a container used to store many separate values. The container

 public Location clone()
 { // Clone a Location object.
 Location answer;

 try
 {
 answer = (Location) super.clone();
 }
 catch (CloneNotSupportedException e)
 { // This exception should not occur. But if it does, it would probably
 // indicate a programming error that made super.clone unavailable.
 // The most common error would be forgetting the "Implements Cloneable"
 // clause at the start of this class.
 throw new RuntimeException
 ("This class does not implement Cloneable.");
 }

 return answer;
 }

52

itself, in our first examples, will be an array. The container class will have a field that is a
reference to the array. The array, however, is an external object. This means that we have
to do something different when we clone a container class.

Look at the clone method here and circle the line that is different from the lines in the
above clone method from the Location class.

That line of code is doing what we call a "deep copy." Since the IntArrayBag class
contains an array reference as a field, when you want to clone an IntArrayBag object, you
have to clone the array separately. The call to super.clone() merely copies the fields, not
the external objects.

Draw a picture of a shallow copy and a deep copy of an object that contains external objects
as fields.

 public IntArrayBag clone()
 {
 // Clone an IntArrayBag object.
 IntArrayBag answer;
 try
 {
 answer = (IntArrayBag) super.clone();
 }
 catch (CloneNotSupportedException e)
 {
 // This exception should not occur. But if it does,
 // it would probably indicate a programming error
 // that made super.clone unavailable. The most common
 // error would be forgetting the “Implements Cloneable”
 // clause at the start of this class.
 throw new RuntimeException
 ("This class does not implement Cloneable.");
 }
 answer.data = data.clone();
 return answer;
 }

53

equals

The equals method compares two objects for equality and returns true if they are equal.
The equals method provided in the Object class uses the identity operator (==) to
determine whether two objects are equal. For primitive data types, this operator gives the
correct result. For objects, however, it does not. The equals method provided by Object
tests whether the object references are equal—that is, whether the objects being compared
are the exact same object.

To test whether two objects are equal in the sense of equivalency (whether they contain the
same information in their fields or not), you must override the equals method. Here is an
example of a Book class that overrides equals. Note that the programmer decided that
two Books are equal if their ISBN numbers are the same.

Consider this code that tests two instances of the Book class for equality:

This program displays "objects are equal" even though firstBook and secondBook refer
to two distinct objects. They are considered equal because the objects compared contain
the same ISBN number.

You should always override the equals method if the identity operator is not appropriate
for your class.

Note: If you override equals, you should override hashCode as well.

public class Book {

 private String ISBN;
 // rest of code

 public boolean equals(Object obj) {
 if (obj instanceof Book)
 return ISBN.equals(((Book)obj).getISBN());
 else
 return false;
 }
}

 Book firstBook = new Book("0201914670");
 Book secondBook = new Book("0201914670");
 if (firstBook.equals(secondBook))
 {
 System.out.println("objects are equal");
 }
 else
 {
 System.out.println("objects are not equal");
 }

54

Examine the implementation of the equals method from the book's Location object.
Note that the signature of the equals method must always be written the way that this
code shows. The method returns a boolean and receives an Object as a parameter. In
order to compare the fields of that object to the fields of the activating Location object,
you have to cast the parameter as a Location. But first you have to be sure that the
parameter actually is a Location object. After you have cast the parameter as a Location,
Java will be able to get the values of that object's fields so you can compare them to the
activating object's fields. You can refer to the fields without using a getter since this code is
within the Location class.

Assume that you have two Location objects named loc1 and loc2 (in code outside the
Location class). Write a statement that prints "same" if those two locations have the same
x and y values, and writes "different" otherwise. Use the equals method.

Think about a class that implements a container, such as the IntArrayBag class. The
fields of IntArrayBag are an array of integers and a count of the number of integers that
are currently stored in the array. What do you think would make two IntArrayBag objects
equal?

hashCode

Hashing is an important topic in computer science, but we will not discuss it in this course.
We will save that for CS 3460 where it will be given its due attention. Still, a brief
discussion of the hashCode method in the Object class is in order here.

The value returned by the hashCode method in the Object class is the object's memory
address in hexadecimal. By definition, if two objects are equal, their hash code must also

 public boolean equals(Object obj)
 {
 if (obj instanceof Location)
 {
 Location candidate = (Location) obj;
 return (candidate.x == x) && (candidate.y == y);
 }
 else
 return false;
 }

55

be equal. If you override the equals method, you change the way two objects are equated
and Object's implementation of hashCode is no longer valid. Therefore, if you override
the equals method, you should also override the hashCode method. Since we are not
going to do any hashing here in CS 2440, we will ignore this piece of information. You'll
use it in CS 3460.

toString

The toString method is extremely useful, particularly in debugging. If you send an object
reference to the System.out.println method, Java calls the toString method on that
object and prints the String that gets returned. The Object class's toString method
returns a String consisting of the name of the class of which the object is an instance, the
at-sign character '@', and the unsigned hexadecimal representation of the hash code of the
object. This is not particularly useful. What would be better is to get a String containing
the values of the fields of the object.

Here is the toString method in the Location class:

What will the following code print?

 public String toString()
 {
 return "(x=" + x + " y=" + y + ")";
 }

 public static void main(String[] args)
 {
 Location loc1 = new Location(5, 7);
 Location loc2 = new Location(3, 9);

 System.out.println("Location 1 is " + loc1);
 System.out.println("Location 2 is " + loc2);
 }

56

Specifications, Designs and Implementations --
IntArrayBag (Section 3.2)

Section 3.2 of the text describes the specification, design, and implementation of a bag of
integers. The most important thing about this section is to understand the meaning of the
terms, "specification," "design," and "implementation." The IntArrayBag class gives us
something with which to illustrate the concepts, and also serves as our first example of a
container class.

What is a container class?

Here is an image of the first page of the specification of IntArrayBag.

57

The specification continues over three additional pages in the text. There is a section for
each method of the class similar to the sections shown for the constructors. What do those
sections remind you of?

When you write a specification of a class, you first describe the things you want the class to
do. Then you list the methods by which your class will do those things. For each method
you write something like a full Javadoc comment. You include the method's signature, a
description of all its parameters, the method's preconditions and postconditions, and a list
of exceptions and errors that the method can throw.

The methods of the IntArrayBag class are

• public IntArrayBag()

• public IntArrayBag(int initialCapacity)

• public void add(int element)

• public void addAll(IntArrayBag addend)

• public void addMany(int… elements)

• public IntArrayBag clone()

• public int countOccurrences(int target)

• public void ensureCapacity(int minimumCapacity)

• public int getCapacity()

• public boolean remove(int target)

• public int size()

• public void trimToSize()

• public static IntArrayBag union(IntArrayBag b1, IntArrayBag b2)

After you write a class specification, you can test your work by writing some code that will
make use of the class once the class has been implemented. While you are writing this test
program, you may make changes to your specification as you realize that it may not be
quite what is needed to do the job.

At some point you will be satisfied with the specification. Note that you have not yet
decided on the fields that your class will have. Nor have you decided on the algorithms
that the methods will use to do the jobs you have specified for them. The first of these
missing things, the fields, are added in the second phase.

The second phase of creating a new class is the design phase. At this point you decide what
fields (instance variables) your class will need in order to do its work, and you write rules
for how these fields are to be maintained. These rules are called the invariant of the
abstract data type, and they form a contract that each method must live by. Each
method (other than the constructors) can count on those rules being true when the method
is called, and each method must guarantee that the rules are again true when the method
finishes.

The instance variables of the IntArrayBag class are these:

• private int[] data // an array to store elements

• private int manyItems // how much of the array is used

58

The invariant of the IntArrayBag class is as follows:

1. The number of elements in the bag is stored in the instance variable manyItems,
which is no more than data.length.

2. For an empty bag, we do not care what is stored in any of data; for a non-empty
bag, the elements of the bag are stored in data[0] through data[manyItems-1],
and we don't care what is stored in the rest of data.

The third stage of the creation of a new class is the implementation phase. It is at this
point that you figure out how you will write the code for each of your methods.

For each of these methods in the IntArrayBag class, briefly describe how our author
decided to implement them.

• public IntArrayBag()

• public IntArrayBag(int initialCapacity)

• public void add(int element)

• public void addAll(IntArrayBag addend)

• public void addMany(int… elements)

• public IntArrayBag clone()

• public int countOccurrences(int target)

59

 public String toString()
 {
 String s = "";
 for (int i = 0; i < manyItems; i++)
 {
 s += data[i] + " ";
 }
 return s;
 }

• public void ensureCapacity(int minimumCapacity)

• public int getCapacity()

• public boolean remove(int target)

• public int size()

• public void trimToSize()

• public static IntArrayBag union(IntArrayBag b1, IntArrayBag b2)

Why did the author decide to make the union method static?

Suppose we add the following toString method to the IntArrayBag class:

60

Keep track of what the data arrays and manyItems fields of b1 and b2 look like as the following
code executes. Show the final picture and what is printed.

IntArrayBag b1 = new IntArrayBag();

IntArrayBag b2 = new IntArrayBag();

b1.add(1);

b1.add(2);

b1.add(3);

b2.addMany(4,5,6,7,8,9,10,11);

b1.addAll(b2);

System.out.println(b1.getCapacity());

System.out.println(b1);

System.out.println(b2);

System.out.println(IntArrayBag.union(b1, b2));

61

Do the same thing for bags b3 and b4 as the following code executes. Show the final
picture along with what is printed.

IntArrayBag b3 = new IntArrayBag();

b3.addMany(25,25,10,5,25,10,5,1,1,25,25);

b3.add(b3.countOccurrences(25));

b3.remove(10);

b3.remove(10);

b3.remove(10);

IntArrayBag b4 = b3.clone();

b3.trimToSize();

System.out.println(b4.getCapacity() – b3.getCapacity());

System.out.println(b3);

System.out.println(b4);

62

DoubleArraySeq (Section 3.3)

We will need to look at section 3.3 of the text during this discussion of the
DoubleArraySeq class. This is the class that you will be writing in the next lab, and it is
very important that you understand exactly what the methods of the class are each
supposed to do.

What are the differences between a Bag class and a Sequence class? In a Bag there is no
significance to the ordering of the elements, and there is no way that someone using a Bag
class can "step through" the elements of the Bag. With a Sequence, however, the order of
the elements is at the user's control, and methods are provided to iterate through the
elements from the beginning to the end.

The DoubleArraySeq class is a container class designed to hold doubles in a partially filled
array. What is a partially filled array? How do you manage one?

Let's go through the specification of the DoubleArraySeq class. For each method, briefly
note what the method is supposed to do.

public DoubleArraySeq()

public DoubleArraySeq(int initialCapacity)

public void addAfter(double element)

public void addBefore(double element)

63

public void addAll(DoubleArraySeq addend)

public void advance()

public DoubleArraySeq clone()

public static DoubleArraySeq concatenation(DoubleArraySeq s1,

DoubleArraySeq s2)

public void ensureCapacity(int minimumCapacity)

public int getCapacity()

public double getCurrent()

public boolean isCurrent()

64

public void removeCurrent()

public int size()

public void start()

public void trimToSize()

The design we will use makes use of three instance variables: (1) data, a partially filled
array of doubles, (2) manyItems, a count of the number of doubles in the array, and
(3) currentIndex, the index of the current element in the array (if there is one).
The invariant of our abstract data type, DoubleArraySeq, is as follows:

1. The number of elements in the sequence is stored in the instance variable
manyItems.

2. For an empty sequence, we do not care what is stored in any of data; for a
nonempty sequence, the elements of the sequence are stored from data[0] to
data[manyItems-1], and we don't care what is stored in the rest of data.

3. If there is a current element, then it lies in data[currentIndex]; if there is no
current element, then currentIndex equals manyItems.

Under what circumstances is there no current element in a DoubleArraySeq?

65

After each of the following methods, what will the current element be, if any?

Under each of the following conditions, tell where addBefore and addAfter will place the
items, and how the rest of the data array will change.

 addBefore() addAfter()

sequence is empty

there is a current item

there is no current item

after a constructor

after addAfter

after addBefore

after addAll

after advance

after
concatenation

after removeCurrent

after start

66

Make a table for the time analysis of the Sequence operations similar to the one for the Bag
operations on page 143.

Operation Time Analysis Operation Time Analysis

Constructor
(let c be initial capacity)

 start

addBefore without
capacity increase and
with current element

 advance

addBefore without
capacity increase and
without current
element

 removeCurrent

addBefore with capacity
increase

 isCurrent

addAfter without
capacity increase and
with current element

 getCurrent

addAfter without
capacity increase and
without current
element

 concatenation(s1, s2)

addAfter with capacity
increase

 getCapacity

s1.addAll(s2) without
capacity increase

 ensureCapacity

s1.addAll(s2) with
capacity increase

 size

clone

 trimToSize

In the lab you will be asked to add these methods to the author's specification:

1. toString method that returns a String representation of the DoubleArraySeq,
and

2. equals method that determines if two DoubleArraySeq are equal.

The toString method must return a String in the following form. If the sequence is
empty, the method should return “<>”. If the sequence has one item, say 1.1, and that item
is not the current item, the method should return “<1.1>.” If the sequence has more than
one item, they should be separated by commas, for example: “<1.1, 2.2, 3.3>.” If there
exists a current item, that item should be surrounded by square brackets. For example, if
the second item is the current item, the method should return: “<1.1, [2.2], 3.3>.”

The equals method should return true if the two sequences contain the same number of
elements, if the corresponding entries in the sequence are the same, and if they have the

67

same current element. The two sequences do not have to have the same capacity. The
easiest way to determine whether or not two DoubleArraySeqs are the same is to compare
their String representations. If the sequences are the same, their Strings will also be the
same.

Trace what happens when the following code runs and show the final output.

 public static void main(String[] args)
 {
 DoubleArraySeq list = new DoubleArraySeq();
 list.addAfter(1.1);
 list.addBefore(2.2);
 list.addAfter(3.3);
 list.advance();
 list.advance();
 list.addAfter(4.4);
 list.start();
 list.addBefore(5.5);
 System.out.println(list.toString());
 }

68

Inheritance (Sections 13.1, 5.1)

The material in this section is taken from our text book.

Extended classes use a concept called inheritance. In particular, once we have a class, we
can then declare new classes that contain all of the methods and instance variables of the
original class—plus any extras you want to throw in. This new class is called an extended
class of the original class. The original class is called the superclass. The methods that the
extended class receives from its superclass are called inherited methods.

There is another kind of access besides public and private. It is called protected. To
outside classes that are not subclasses, protected is like private. But to extended
classes, protected is like public.

Note that it is the public and protected members of the superclass that are accessible to
the extended class. The private members are present – they have to be in order for the
superclass to be able to do its job as it was designed – but they cannot be accessed directly
by the extended class.

Extended classes may declare their own constructors or they may use a no-args constructor
that is inherited from the superclass. Other superclass constructors with arguments are
not inherited by extended classes. If an extended class has new instance variables that are
not part of the superclass, then an inherited no-args constructor will set these new
variables to their default values (zero for numbers, false for booleans, null for references)
and then do the work of the superclass's no-args constructor. If an extended class declares
any constructors of its own, then it does not inherit the no-args constructor of the
superclass.

An object of the extended class may be used at any location where the superclass is
expected. For example, suppose you have a superclass called BankAccount and several
extended classes called CheckingAccount, SavingsAccount, CDAccount, etc. Java would
allow you to declare a container of BankAccount objects and then add any instances of the
subclasses to the container.

Sometimes an extended class needs to perform some method differently from the way that
the superclass does. In this case, the extended class can contain a method with the same
signature (or nearly the same – more on this in the next paragraph) but different code.
This is called overriding an inherited method. Objects of the extended class type can still
access the method in the superclass, but they have to qualify it with the name of the
superclass and a dot prior to the method.

The data type of the return value of an overriding method doesn't have to be exactly the
same type as the return value of the original method in the superclass. It can actually be a
descendant of the data type of the return value of the original method. This is called a
covariant return value.

69

Widening Conversions for Extended Classes

Assignments are allowed from an extended class to an object of the superclass type. Such
assignments are called widening conversions. Widening conversions are always
permitted.

When a program is running and a method is activated, the Java runtime system checks the
data type of the actual object that activated the method, and uses the method from that
type, rather than the method from the type of the reference variable. This technique of
method activation is called dynamic method activation because the actual method to
activate is not determined until the program is running. A method that behaves like this is
called a virtual method. Java's nonstatic methods are always virtual.

Narrowing Conversions for Extended Classes

Assignments are also permitted from a superclass to one of its extended types. These are
called narrowing conversions. When you write a narrowing conversion, you have to use a
typecast or the compiler will report an error. The typecast will avoid syntax errors, but it is
still possible to get an error at runtime if the object's type does not match the typecast.

Examples

1. Assume that ComputerInputDevice is a superclass of MouseDevice. The following
statement occurs in a correct program:

ComputerInputDevice device = new MouseDevice();

What is the static type of device?

What is the dynamic type of device after this statement?

2. The Shape class constructor has the following signature:

public Shape(int xPos, int yPos)

where xPos and yPos are the screen coordinates of the Shape and the constructor
assigns them to fields of the Shape class.

Write the class wrapper and constructor for a class called Rectangle which is a
direct subclass of Shape and which contains two fields specifying a rectangle's width
and length. The Rectangle constructor takes four parameters: the rectangle's x
and y position coordinates, and its length and width. The Rectangle constructor's
statements must cause a new Rectangle object to be initialized with x, y position
and length and width.

70

What English phrase can be used to compare two things to see if there is an inheritance
relationship between them?

What class is a superclass of all other classes?

In the following pairs of classes, identify the superclass by circling it, or write NONE if no
inheritance relationship is clearly present.

• Horse, Animal

• Television, PowerCord

• Vehicle, Bus

• Page, Book

• Java, ProgrammingLanguage

• Mammal, Reptile

• Parrot, Bird

• Blue, Color

• Lawyer, Doctor

71

Assume we have four classes: Person, Teacher, Student, and PhDStudent. Teacher
and Student are both subclasses of Person. PhDStudent is a subclass of Student. Which
of the following assignment statements are syntactically legal, given the declarations
shown?

Person p1;

Person p2;

PhDStudent phd1;

Teacher t1;

Student s1;

p1 = new Student(); legal illegal
p2 = new PhDStudent(); legal illegal
phd1 = new Student(); legal illegal
t1 = new Person(); legal illegal
s1 = new PhDStudent(); legal illegal
s1 = (Student) p1; legal illegal
s1 = (PhDStudent) p2; legal illegal
p1 = s1; legal illegal
t1 = s1; legal illegal
s1 = phd1; legal illegal
phd1 = s1; legal illegal

Name one of the statements above that is an example of a widening conversion.

Name one of the statements that is an example of a narrowing conversion.

72

Abstract Classes and Interfaces (Sections 13.4, 5.5)

Abstract Classes

Sometimes, when you implement a large software system, you will have multiple classes
that all have commonalities but that also have differences. In lab 6 you will implement a
zoo of many different kinds of animals, for example. For the commonalities, you can make
a superclass and put methods in it that all the subclasses will inherit. For the differences,
each subclass will need to have its own implementation.

When you design the superclass, you know what methods you want each subclass to
implement for themselves to handle the differences between them. You can make these
methods abstract in the superclass which forces each subclass to implement them. For
example, in the Animal class for lab 6, you will make abstract methods makeNoise and eat.
To make a method abstract, you put the word abstract before the return type and you put a
semicolon after the parameter list instead of implementing the method:

Any class with abstract methods is an abstract class, so the class wrapper of the Animal
class begins this way:

If a class is abstract, you are not allowed to use the new keyword to create an object of that
type. Its subclasses will not be abstract if they implement the missing methods (they will
be concrete), and you will be able to create objects of the subclass types. On occasion,
however, a subclass of an abstract class may need to be abstract itself. In the zoo lab, there
is an abstract subclass of Animal called Canine, with four concrete subclasses of Canine
called Dog, Wolf, Coyote, and WildDog. The abstract class, Canine, does not itself have any
abstract methods. It is abstract only because the designer of this lab did not want users to
be able to create new Canine objects.

Interfaces

An interface is something like a completely abstract class. It contains no concrete methods
at all – it is simply a list of related methods that are specified but not implemented. A class
can implement an interface by writing those methods. See the sample of an interface
below.

 /**
 * abstract method to say what happens when the animal makes noise.
 */
 public abstract void makeNoise();

 /**
 * abstract method to say what happens when the animal eats.
 */
 public abstract void eat();

public abstract class Animal

73

There are many interfaces in the Java API such as ActionListener, Iterable, Iterator, and
Comparable. You will create an interface for the zoo lab called Pet. Any class that
implements the Pet interface (like Dog and Cat) will need to implement the play and
beFriendly methods, as specified here:

The Java keyword, instanceof, can be used on an object at runtime to see whether or not
the object is of a type that implements the Pet interface. It is necessary to do that before
you call either the play or beFriendly method on that object. Even after you confirm that
an object implements the interface, you have to cast it before calling the methods, as shown
here:

public interface Pet
{
 /**
 * method to say what pets do when they play
 */
 public void play();

 /**
 * method to say how pets are friendly.
 */
 public void beFriendly();
}

 for (Animal a : zooAnimals)
 {
 System.out.println(a.getName());
 a.sleep();
 System.out.println(a.getName() + " is hungry!");
 a.makeNoise();
 a.eat();
 a.roam();
 if (a instanceof Pet)
 {
 ((Pet) a).play();
 ((Pet) a).beFriendly();
 }
 System.out.println();
 }

74

UML (Unified Modeling Language) Diagrams

UML diagrams are standard diagrams for describing object-oriented systems. A sample
UML diagram for a class called Rectangle is shown here:

Notice that the diagram is a box that is divided into three sections. In the top section you
write the name of the class. In the middle section you list the class’s fields, and in the
bottom section you list the class’s methods. Although it is optional, in this example the

names of the fields and methods are preceded by either − or +. The − indicates that the
member is private while + indicates that it is public.

After the name of a field you place a colon and then write the field's type. After the name of
a method you put a parameter list, then a colon, and then the return type of the method.
Within the parameter list you put the name of each parameter followed by a colon and its
type. Multiple parameters are separated with commas.

To illustrate inheritance in UML diagrams, a subclass is connected to its superclass with a
line that has an open arrowhead at one end, like this:

In order to indicate in a UML diagram that a class is abstract, put the name of the class in
italics and write the specification of the abstract methods in italics. In order to indicate an

75

interface, put the notation "<<interface>>" in the title area of the UML box. Here is the
UML diagram of the classes from lab 6.

76

Study List for 2440 Exam 1

1. From 1440: Be able to trace code that calls methods, passes values, returns values,

evaluates expressions, and traverses arrays. Understand the difference between
declaring a variable and allocating an object using "new."

2. Understand the behavior of objects and primitives when passed as arguments to
methods.

3. Know how to read and write methods that process two-dimensional arrays.
4. Know how to create and use enumerated data types.
5. Know the difference between specification, design, and implementation.
6. Know how to write preconditions and postconditions for methods. What is the value

of preconditions and postconditions? At what point in the creation of a new class are
they written?

7. Know the formula used to predict running time for an algorithm on a second data size,
given the big-O analysis of the algorithm and given one data size/running time
combination.

8. Be able to determine the big-O of methods (like you did in the second homework).
9. Understand the effects of making a method or a field static.
10. Know how to write an equals method, a clone method (for classes that need deep

copies and those that do not), and a toString method.
11. Be able to identify the parts of a GUI and understand the Java classes that are used to

create those parts.
12. Know how exception handling works. Be able to both catch and throw exceptions, and

know when it is appropriate to do both.
13. Know how to shift data in an array to either make room for a new element or remove

an element.
14. Understand the concept of a partially-filled array and how one is maintained.
15. Know what an invariant is. Who writes the invariant and at what stage?
16. Understand the invariant of the IntArrayBag class, and know how the IntArrayBag

class methods maintain that invariant.
17. Understand the invariant of the DoubleArraySeq class, and know how the

DoubleArraySeq class methods maintain that invariant. Be able to trace code making
use of DoubleArraySeq methods.

18. Be able to explain the big-O analyses of the methods in the IntArrayBag and
DoubleArraySeq classes.

19. Given a UML diagram for a set of related classes and interfaces, such as the UML
diagram for the Zoo lab, be able to write the classes.

77

78

AbstractGame Class (Section 13.4)

In chapter 13, the author provides an abstract class with which we can implement any
2-player game with perfect information in which a human player competes against the
computer. A game with perfect information is one in which both players know the current
status of the game. Chess and checkers are such games – both players can see the game
board and players have no secrets from each other. Card games in which players cannot
see each other's hands, however, do not have perfect information.

AbstractGame implements an AI algorithm called minimax that searches the nodes of a
game tree for the best move to make whenever it is the computer's turn to play. It involves
looking several moves ahead and predicting that the human player will be smart and make
the best moves he or she can make (the player will minimize the computer's chances of
winning). Under that assumption, the computer makes the best move it can make to
maximize its chances of winning. The more moves ahead you set the algorithm to look, the
harder the computer is to beat.

Here is a game tree that shows the first two moves in a game of Tic-Tac-Toe. The tree has
been simplified by removing symmetrical positions.

We will look at some online descriptions of the algorithm in class. The algorithm is a bit
complicated to implement. What's nice is that we don't have to implement it – the author
already did that.

In order to write a 2-player game (human vs. computer), we will extend AbstractGame.
But we also need to design our own implementation of whatever game we want to create.
We first have to decide what data structures we need to represent the state of the game at
any point in time. These data structures will be the fields of our game class. We will need
a constructor to initialize these data structures at the start of a game. We will need a clone
method that will correctly make a deep copy of our game. We also have to write six
methods that are abstract in AbstractGame:

79

• computeMoves(): Vector<String>
This method must generate a Vector of legal moves that can be made at any given
point in the game. Moves must be represented as Strings. AbstractGame will call
on this method whenever it needs to know what moves are possible for the current
player in its search of the game tree.

• displayStatus(): void
This method prints the game to the screen so that the player can see the current
state of the game.

• evaluate(): double
This method needs to return a numeric value that correlates to the quality of the
current game state from the point of view of the computer. The method needs to
return a positive number when the game state favors the computer – the better the
game state is for the computer, the higher the number that this method returns.
The method needs to return a negative number if the game state is better for the
human, and the better the game state is for the human, the more negative the return
value should be.

• isGameOver(): boolean
This method returns true if the game is over and false otherwise.

• isLegal(move: String): boolean

This method is passed a move. It returns true if that move is legal, given the current
state of the game and whose turn it is.

• makeMove(move: String): void
This method is responsible for changing the game state when either the computer or
the human makes a move. The move to be made is passed to the method.

The author provides us with a sample game, Connect4, that we can use to help understand
how to make use of AbstractGame. We will examine the Connect4 game during class. For
the next lab you will implement a Wari game. We will spend more time discussing Wari
right before the lab.

80

Linked Lists (Sections 4.1, 4.2)

The concepts involved in using linked lists to create data structures are perhaps the most
important concepts of a Computer Science II class. It is imperative that you get a good
understanding of this material because it is foundational to many different data structures
that you will use in 3460 and afterward.

The container classes we have seen so far, IntArrayBag and DoubleArraySeq, were
implemented with arrays. Container classes can also be built with linked lists. We need to
understand the differences between arrays and linked lists at a conceptual level before we
look at the implementation details of linked lists.

Arrays are stored in consecutive cells in RAM. When you create an array you have to
specify a type and a count of the number of elements. Java knows how much space one
element of that type takes, so it multiples that size times the number of elements you want,
and allocates a block of memory of that total size for the array. Random access is possible
because array elements are stored consecutively. A program can go directly to any element
in an array by using the element's index. Java knows where the array begins in RAM.
When you want to access element i of a single-dimension array, Java multiplies i by the
size of one element and adds that amount to the address of element 0.

Random access is the primary benefit of arrays. One drawback is that the size of an array
is fixed. Another drawback is that it is expensive to insert a new element into an array or to
delete an element – all elements from that point forward have to be shifted.

Linked lists are composed of structures that we call nodes. In a singly-linked list, each
node contains both data and the address in RAM of the next node in the structure. These
addresses are what we call links. The last node in the list has a null link to mark it as the
end of the list.

Typically we simplify the picture of a linked list by removing the addresses and leaving
arrows to indicate the links. We use a "ground" symbol to indicate null.

81

Linked lists can be created in such a way that each node contains a link both to the next
node in the sequence and to the previous node. We call these doubly-linked lists.

Binary trees of nodes can be created by putting links to left and right children in each node
along with data. The following picture is simplified even further by leaving out all the null
links in nodes that have missing children.

We will not implement doubly-linked lists or trees in CS 2440, but you will implement
them in later courses. For now we will work only with singly-linked lists.

Recall that when you begin the creation of a new class, the first phase is specifying all the
methods that your class will need. The list of methods from the DoubleArraySeq class
included addBefore, addAfter, removeCurrent, start, advance, isCurrent,
getCurrent, and others. At the second phase you decide what data structures you will
use. For DoubleArraySeq we used an array of doubles named data, a count named
manyItems, and an index of the current element named currentIndex.

Soon you will implement another class called DoubleLinkedSeq. It will have almost the
exact same specification as DoubleArraySeq, but at the design phase you will choose to
use a linked list to contain the sequence of doubles instead of an array. The data members
of DoubleLinkedSeq are references to nodes, along with a count of the number of nodes in
the list.

Note that to someone using either of your sequences as a container for their data, they
could write a program for one of your classes and it would work perfectly well on the other
one (other than the declaration of the sequence). All of the methods do exactly the same
things in either implementation.

82

The StringNode Class

We will first examine a StringNode, a node that stores a String for its data. Our node
has two fields. One is for the data portion and the other is a link (reference) to the
StringNode that is next in the linked list. The class has various constructors, getters, and
setters as shown here:

public class StringNode
{
 private String data;
 private StringNode link;

 public StringNode()
 {
 data = null;
 link = null;
 }

 public StringNode(String data)
 {
 this.data = data;
 link = null;
 }

 public StringNode(String data, StringNode link)
 {
 this.data = data;
 this.link = link;
 }

 public void setLink (StringNode newLink)
 {
 link = newLink;
 }

 public void setData (String newData)
 {
 data = newData;
 }

 public StringNode getLink ()
 {
 return link;
 }

 public String getData ()
 {
 return data;
 }
}

83

Now consider the following code:

To figure out what the code will output, we need to draw a picture.

What is str?

What is str.getData()?

What is str.getLink()?

What is str2?

What is str2.getData()?

What is str2.getLink()?

What is str2.getLink().getData()?

What does the code output?

 public static void main(String[] args)
 {
 StringNode str = new StringNode();
 str.setData("Dino");
 StringNode str2 = new StringNode("Fred", str);
 StringNode str3 = new StringNode("Barney", str2);
 StringNode str4 = str3;
 while (str4 != null)
 {
 System.out.println(str4.getData());
 str4 = str4.getLink();
 }
 }

84

Now write some code to make a new StringNode with "Fido", and insert it between "Fred"
and "Dino".

To check for the equality of references, you may use ==. The equality operator, ==, tests
whether two reference variables contain the same address. To check for the equality of data
in the nodes that are being referenced, you will need to use the equals method unless the
data is a primitive, such as int or double.

We have seen a class that defines one node. A linked list class has to manage a series of
nodes. The simplest form of a linked list will have a field that is a count of the number of
nodes in the list, and a reference to the first node in the list. To get to the other items in
the list we have to traverse the list using the link references the way we did above.
Suppose the fields of a list are called head and manyNodes. Here are common ways to
traverse, printing the list:

while loop:

Node traverse = head;

while (traverse != null)

{

 System.out.println (traverse.getData()); // print the actual

data portion

 traverse = traverse.getLink();

}

for loop:
 for (Node traverse = head; traverse != null; traverse =

traverse.getLink())

 {

 System.out.println (traverse.getData());

 }

Let’s practice tracing some code using the StringNode class. Draw a picture showing the
results of the following code and write what the code outputs.

85

public class Weather
{
 public static void main(String args[])
 {

 String arr[] = {"snow", "rain", "sleet"};
 StringNode p, q, r, s;

 p = new StringNode("hail");
 for (int i = 0; i < 3; i++)
 {
 p.setLink (new StringNode(arr[i], p.getLink()));
 }
 System.out.println("Answer 1 ");
 for (r = p; r != null; r = r.getLink())
 {
 System.out.println(r.getData());
 }

 r = p;
 while (r.getLink() != null)
 {
 r = r.getLink();
 }

 r.setLink(p);
 q = r.getLink();
 q = q.getLink();
 System.out.println("Answer 2 " + q.getData());

 s = new StringNode("cloudy", q);
 r = r.getLink();
 r.setData("snow");
 r.setLink(s);
 System.out.println("Answer 3 " + q.getData());
 System.out.println("Answer 4 " + p.getData());

 System.out.println("Answer 5 ");
 while (s != p)
 {
 System.out.println(s.getData());
 s = s.getLink();
 }
 }
}

86

The IntNode Class from Our Textbook (Section 4.3)

The author of the textbook provides an IntNode class that contains more methods than
our simple StringNode class contains. Along with a constructor and get and set methods
for the two fields in the IntNode, the author adds methods that can be used to manage a
linked list. You will make use of this IntNode class when you write the DoubleLinkedSeq
class.

Suppose we have created the following list of IntNodes:

Then the code shown here will change the list as you see below:

Here is the code of the addNodeAfter method. We activated the method on the node that
tail refers to. The method made a new IntNode, put 36 in the data field, set the link
field to the same value as the link of the tail node, and then changed the link of the
tail node so that it referred to the new IntNode.

Since we want to maintain the tail pointer on the last node of the list, we need to move tail
to the node that was just added. Write some code to do that:

Another method that the author provides in the IntNode class is called removeNodeAfter.
This method can remove the node that comes after the activating node. Here is the code of
the removeNodeAfter method:

 public void addNodeAfter(int item)
 {
 link = new IntNode(item, link);
 }

 node2.setData(-3);
 tail.addNodeAfter(36);

 public void removeNodeAfter()
 {
 link = link.link;
 }

87

Here is the current list:

Draw a picture of the list if we call the removeNodeAfter method with head:

What happens to the node that node2 refers to?

The author also provides some static methods that can be used by classes that create linked
list structures. One of these methods is called listSearch. You pass it a reference to the
node where you want the search to begin (usually the head node) and a target to search for.
The method returns a reference to the node containing the target or null if the target is not
found. Here is the method:

Notice that in static methods, IntNode objects are passed as parameters. There is no
activating object. To call a static method we have to use the name of the class. How would
we call the listSearch method to search for 19 in the above list?

 public static IntNode listSearch(IntNode head, int target)
 {
 IntNode cursor;

 for (cursor = head; cursor != null; cursor = cursor.link)
 if (target == cursor.data)
 return cursor;

 return null;
 }

88

Other static methods in the IntNode class are:

• public static IntNode listLength(IntNode head): Returns the number of
nodes in the list.

• public static IntNode listPosition(IntNode head, int position):

Returns a reference to the node whose "index" is equal to the parameter, position.
Unfortunately, the author decided to make the head node be position "1".

• public static IntNode listCopy(IntNode source): Copies the list and
returns the head pointer to the copy.

• public static IntNode[] listCopyWithTail(IntNode source): Copies the
list and returns both the head pointer and the tail pointer to the copy (in an array).

• public static IntNode[] listPart(IntNode start, IntNode end):

Copies the part of the list from start to end and returns a head pointer and tail
pointer to the copy (in an array).

Here is one of the copy methods. Trace its behavior on the small list below the code.

 public static IntNode[] listCopyWithTail(IntNode source)
 {
 IntNode copyHead;
 IntNode copyTail;
 IntNode[] answer = new IntNode[2];

 // Handle the special case of the empty list.
 if (source == null)
 {
 return answer; // The answer has two null references .
 }

 // Make the first node for the newly created list.
 copyHead = new IntNode(source.data, null);
 copyTail = copyHead;

 // Make the rest of the nodes for the newly created list.
 while (source.link != null)
 {
 source = source.link;
 copyTail.addNodeAfter(source.data);
 copyTail = copyTail.link;
 }

 // Return the head and tail references.
 answer[0] = copyHead;
 answer[1] = copyTail;
 return answer;
 }

89

90

Wari Game

Wari is a game for two players, using a 2 x 6 board and 48 beans.

Rules of the game:

1. Set-up: At the beginning of the game, four beans are placed in each of the 12
squares on the board. The board is placed between the two players. The six squares
on Player A's side of the board are Player A's squares, and similarly for Player B.
Players decide who will go first.

2. Players alternate turns. On a turn, a player selects one of his or her squares,
removes all the beans from that square, and redistributes them counter-clockwise
around the board, one bean per square. If there are enough beans to go all the way
around the board and back, the starting square is skipped. The starting square is
always empty after redistribution.

3. If during redistribution the last bean is placed in an opponent's square so that the
number of beans in this square becomes 2 or 3, then the player captures the beans
from that square, and also captures any beans from consecutive preceding
opponent's square(s) where the number of beans in those squares is 2 or 3. The
captured beans are placed in the player's bean stash at the end of the board.

4. There are two ways to win the game. The game stops when one player captures 25
or more beans and that player is the winner. The game also stops when, at a player's
turn, there are no beans in any of this player's squares. At that point the player with
the most beans is the winner.

Preparation for Lab:

In lab, you will be implementing Wari by extending the AbstractGame class provided by
the author of our textbook. Recall that in order to extend the AbstractGame class, the
subclass must provide the following:

1. Instance variables (fields) to represent the status of the game being written.
2. A way of representing a move in the game as a String.
3. A constructor that initializes the instance variables for the start of a game after it

calls the default no-arg superclass constructor.
4. These methods that are abstract in AbstractGame:

a. protected Wari clone(): You need to do a deep copy in your clone
method.

91

b. protected Vector<String> computeMoves(): Find out whose turn it is
and put all the String representations of valid next moves for that player into
a Vector of Strings. Return the Vector.

c. protected void displayStatus(): Display the current status of the
game.

d. protected boolean isGameOver(): Return whether or not the game is
over.

e. protected boolean isLegal(String move): Return whether the
parameter, move, is a legal move to be played next.

f. protected void makeMove(String move): Make this move, updating
your fields as necessary.

g. protected double evaluate(): Return a value estimating how good the
current status of the game looks for the computer – the higher the value, the
better for the computer. Zero means it looks even at this point. A negative
value means the computer appears to be losing.

5. A main method that calls repeatPlay and passes "Wari" and DEPTH. Make DEPTH a
final variable in your game class.

What fields might you use for the Wari game? As you consider the possibilities for
representing the board, think about how easy or hard it will be to redistribute beans using
each of the representations.

How will you represent moves as Strings?

How will you determine which moves are legal at any point in time?

Sketch out what your displayStatus method will print.

How will you write the makeMove method? This is the method that has to redistribute
beans and then collect any beans that the player captures.

Be familiar with the methods that Wari inherits from AbstractGame. They are listed in
the book, so be sure to bring your book to lab. One very useful method is nextMover. It
returns whose turn it is, either Player.human or Player.computer.

92

The IntLinkedBag Class (Section 4.4)

The specification for the IntLinkedBag class is the same as for the IntArrayBag class.
We have a constructor and these methods in the class:

• public void add(int element)

• public void addAll(IntLinkedBag addend)

• public void addMany(int... elements)

• public IntLinkedBag clone()

• public int countOccurrences(int target)

• public int grab()

• public boolean remove(int target)

• public int size()

• public static IntLinkedBag union(IntLinkedBag b1, IntLinkedBag b2)

The IntLinkedBag class has two instance variables, head and manyNodes, with this
invariant:

1. The elements in the bag are stored in a linked list.
2. The head reference of the list is stored in the instance variable head.
3. The total number of elements in the list is stored in the instance variable

manyNodes.

What values should head and manyNodes have when the bag is empty?

Why do we have a field for manyNodes when there is a method in the IntNode class to
compute the length of a list? There is a size method in the IntLinkedBag class. Which
should it use?

Does the IntLinkedBag class need to do a deep copy in the clone method, or will simply
calling super.clone suffice?

The IntLinkedBag class uses methods from the IntNode class for many of its tasks. What
method from the IntNode class would help with the clone method? How should the
method be called?

Recall that the parameter to a Bag’s remove is the item to remove, and that item must be
found in the Bag before it can be removed. What method from the IntNode class would
help with finding the element to be removed? How is it called?

93

Remember that to remove an element from an IntArrayBag, we overwrote it with the last
element in the array and reduced manyNodes by one. Once the element to be removed is
found in the IntLinkedBag, what is the author’s algorithm for removing the item? State
this in English first, and then list the steps in Java.

Another way the remove could have been done was to change the link of the previous node
to the link to the following node. What would have been difficult about this?

The countOccurrences method has an int parameter, and the method is supposed to
return the number of occurrences of that int in the list. Your textbook uses the
IntNode’s listSearch method to do this. Trace this code on the following list when the
method is told to count 14's.

 14 14 3 5 14 8 12 14

head

 public int countOccurrences(int target)
 {
 int answer;
 IntNode cursor;

 answer = 0;
 cursor = IntNode.listSearch(head, target);
 while (cursor != null)
 { // Each time that cursor is not null, we have another occurrence of
 // target, so we add one to answer and then move cursor to the next
 // occurrence of the target.
 answer++;
 cursor = cursor.getLink();
 cursor = IntNode.listSearch(cursor, target);
 }
 return answer;
 }

94

Write the method yourself a different way without using the listSearch (just traverse the
list and compare each piece of data and update the count accordingly).

What are the possible values of the expression: (int)(Math.random() * manyNodes) + 1?

Using Math.random, write an expression that calculates a random integer between -50 and
40.

What does the grab method do?

Where are new elements added to the IntLinkedBag? Why?

Both the union and addAll methods put two bags together. How is the union method
different from the addAll method?

95

Suppose we have a program that has two IntLinkedBag objects bagA and bagB as
shown:

bagA:
manyNodes = 4

bagB:
manyNodes = 5

What would bagA look like after the following two lines of code were executed?

bagA.addAll(bagB);

bagB.remove(5);

For each of the following Bag methods, tell the BigOh of the linked implementation. Is
each method more or less efficient than the array implementation?

 IntLinkedBag compared to IntArrayBag
add(int item)
remove (int item)
clone()
size()
grab()
addMany(int …

elements)

countOccurrences(int

item)

Name one advantage of the linked bag over the array bag?

Name one advantage of the array bag over the linked bag?

96

The DoubleLinkedSeq Class (Section 4.5)

In lab, you will be implementing the double sequence as a linked list. Your textbook
suggests that you use five fields: head, tail, cursor, precursor, and manyNodes.

What does each of the five fields represent?

• head:

• tail:

• cursor:

• precursor:

• manyNodes:

Look back at the invariant for IntLinkedBag and use it as a model to write an invariant for
the DoubleLinkedSeq class:

Suppose you have the following sequences. Draw the linked structure and show the values
of the fields: head, tail, cursor, and precursor:

<3.2, 4.1, 5.5, [1,0], 3.1>

 <>

97

<4.3>

<[4.3]>

<[5.5], 6.2>

isCurrent: One of the methods you will write is named isCurrent. It returns true if
there is a current item, and false otherwise. How can you detect if there is no current item?

addBefore: Here is a case by case analysis for the addBefore method. For each case,
state which of the four reference fields will have to change. Assume that we check the
conditions in the order they are listed.

if the list is empty

__

else if there is no current item or the first item is the current item

__

else (there are at least two items in the list, there is a current item, and it is not the first
item)

__

98

Write code for the part of addBefore that deals with the case that the list is empty.

Write code for the part of addBefore that deals with the case that either there is no current
item or the current item is the first item.

Write code for the last case, when the current item is not the first one.

removeCurrent: Great care must be taken to check all cases when removing the current
element from the sequence. Draw pictures and take note of which fields change under the
following circumstances.

There is only one element in the sequence?

__

The current element is first?

__

The current element is at the end?

__

99

All other cases? (There are more than two nodes, and the current element is somewhere
between the first and last.)

__

The DoubleLinkedSeq class adds a tail reference that was not part of the IntLinkedBag
class. What methods of the sequence class make it useful to keep a tail reference?

addAfter: What cases must be considered in the implementation of the addAfter
method? List them in the order you will check them and for each case state which
references will have to change?

100

You will have a DoubleNode class that has helper methods similar to the IntNode class.
What helper method from the DoubleNode class will help with the concatenation method?

Consider the following methods in the DoubleLinkedSeq class. What is the complexity of
the method? Is the method more or less efficient than the array implementation?

 DoubleLinkedSeq DoubleArraySeq

addBefore(double element)

addAfter(double element)

removeCurrent ()

start()

isCurrent()

getCurrent()

advance()

clone()

size()

concatenation(DoubleLinkedSeq seq1,
DoubleLinkedSeq seq2)

addAll(DoubleLinkedSeq other)

toString()

equals(DoubleLinkedSeq seq)

101

The clone method requires special consideration. See the discussion on page 235 to help
with this method. For each of the following cases, describe how you will use the
DoubleNode copy methods to copy the sequence and how you will set the reference fields.

if the sequence to be copied has no current element:

else if the current item is the first item

else (the current item comes after the first one)

102

Generics (Sections 5.1-5.3)

There are eight primitive types in Java. Name them:

1. ____________ 2. ____________ 3. _____________ 4. ______________

5. ____________ 6. ____________ 7. _____________ 8. ______________

Everything else is an object. All objects are part of the hierarchy of Java objects and are all
subclasses of the Object class. We have already talked about the methods of Object that
are inherited by all other classes but that generally have to be overridden to be useful.
Name four such methods:

1. ____________ 2. ____________ 3. _____________ 4. ______________

In the Java library there are many useful container classes such as ArrayList, Vector,
and LinkedList. These are all generic classes. When you declare one, you have to tell
Java what type of objects you intend to store in the container (and only objects will work).
For example, here is the declaration of a Vector of Strings:

The type is supplied in angle brackets. Any type other than the eight primitives will work.
But what if you want to store ints or doubles or one of the other primitives in a generic
library class like ArrayList or Vector? In that case, you have to use the wrapper class for
the type of primitive you need to store. Each one of the Java primitive types has a

corresponding wrapper type. From Wikipedia:

An object of type Byte stores one byte, and similarly for each of the other wrapper classes.
Conveniently, Java allows you to treat a variable of a wrapper type as if it was a primitive
when you refer to it in your code by autoboxing and auto-unboxing your wrapper objects.

 Vector<String> moves = new Vector<String>();

103

For example, in the following code, x is assigned the value 5 using the keyword new to
create a new Integer object and passing 5 to the constructor. Integer y, on the other
hand, is assigned the value 7 just as if y was an int instead of an Integer. This is an
example of autoboxing. The next line causes both autoboxing and auto-unboxing to occur.
In order to add x and y, Java has to get the ints 5 and 7 out of the Integer objects. It
does this whenever an Integer object is used in an arithmetic expression, and it's called
auto-unboxing. Once the ints are added together, Java needs to box up the sum in order
to put it into the Integer, z. This is another example of autoboxing.

A disadvantage of using wrapper classes is that there is some overhead involved in their
usage, and that extra work for Java causes the code to run a little slower. An advantage is
that you can turn primitives into objects when you want to put them in generic containers.

We will first look at generic methods. Then we will examine how you write your own
generic classes.

Generic Methods

Suppose you want to reverse the elements of an integer array. Here is some pseudocode
that will do the job:

input: int[] data

for (int i = 0; i < data.length / 2; i++)

{

 swap data[i] with data[data.length – (i+1)]

}

Write the code:

Suppose you also want to be able to reverse arrays of doubles, arrays of chars, and arrays
of Strings. You could write three more methods that are the same except for the type of

public class Wrappers
{
 public static void main(String[] args)
 {
 Integer x = new Integer(5);
 Integer y = 7;
 Integer z = x + y;
 System.out.println(x + " " + y + " " + z);
 }
}

104

the array in the parameter list. Or you could make the method generic. Wherever you
would put the type of the elements that you need to make generic, you put a capital letter
that serves as a generic type parameter. Programmers typically use T or E for such types.
You also put that capital letter inside a set of angle brackets right before the return type of
the method.

Here is the generic reverseArray method along with a main method to illustrate that the
method works (see the output below the code):

public class Wrappers
{

 public static <T> void reverseArray(T[] data)
 {
 for (int i = 0; i < data.length / 2; i++)
 {
 T temp = data[i];
 data[i] = data[data.length - (i + 1)];
 data[data.length - (i + 1)] = temp;
 }
 }
 public static void main(String[] args)
 {
 Integer[] array = {1, 2, 3, 4, 5, 6, 7, 8, 9};
 reverseArray(array);
 for (Integer n : array)
 {
 System.out.print(n + " ");
 }
 System.out.println();
 }
}

105

There are some rules for using generic types due to the way that the Java virtual machine is
designed:

• You may not use the new keyword to create an object of the generic type.

• You may not create an array of the generic type.

These restrictions are due to a compilation technique called erasure, in which the exact
data type of a generic type is unknown at run time when a generic method is running.

Generic Classes

The same way that a generic method can depend on an unspecified (at compile time)
underlying data type, a generic class can do the same thing. Container classes are the
perfect example. The underlying logic of the container data structure does not depend on
what type of data the container holds – just as the array reversal method did not depend on
what type of data was in the array.

We make a class be generic by putting a generic type parameter (such as E or T) in angle
brackets immediately after the class name. Throughout the rest of the implementation, we
use the type parameter as if it were any other class name.

The class header of DoubleLinkedSeq is shown here:

Suppose you want to implement a linked sequence class that can hold any kind of objects.
Write the class header for a LinkedSeq generic class:

The DoubleNode class will not work for our generic LinkedSeq. Instead, we need a generic
Node class so that our nodes can hold any kind of data. Here is the beginning of our
generic Node class:

Note that the data field of a Node is of whatever type a user provides to Java when the
LinkedSeq is declared. Let's go back to the generic LinkedSeq class and change its fields.

public class DoubleLinkedSeq implements Cloneable

public class Node<E>
{
 // Invariant of the Node class:
 // 1. Each node has one reference to an E Object, stored in the instance
 // variable data.
 // 2. For the final node of a list, the link part is null.
 // Otherwise, the link part is a reference to the
 // next node of the list.
 private E data;
 private Node<E> link;

106

This is the way they looked in DoubleLinkedSeq:

What changes need to be made to these fields in our generic LinkedSeq class?

Here is the addBefore method in the DoubleLinkedSeq class. What changes need to be
made to it in our generic LinkedSeq class?

There are some other things that have to be understood when changing array-based
container classes to generic containers. Suppose we want to make the DoubleArraySeq
into a generic sequence class built on an array implementation. Here is the current class
header. Change it to a generic class named ArraySeq.

 private int manyNodes;
 private DoubleNode head;
 private DoubleNode tail;
 private DoubleNode cursor;
 private DoubleNode precursor;

 public void addBefore(double element)
 {
 if (manyNodes == 0)
 {
 head = new DoubleNode(element, null);
 tail = head;
 cursor = head;
 }
 else if (cursor == head || cursor == null)
 {
 head = new DoubleNode(element, head);
 cursor = head;
 }
 else
 {
 precursor.setLink(new DoubleNode(element, cursor));
 cursor = precursor.getLink();
 }
 manyNodes++;
 }

public class DoubleArraySeq implements Cloneable

107

The fields of DoubleArraySeq are as follows:

The indexes can stay the same, but what about the array? We are not allowed to create an
array that holds objects of unknown type E. Instead, we have to declare data as an array of
Java Objects. Write the declaration of data here:

In the constructor, we make a new array of Objects, like this:

Now, whenever we need to retrieve a value from the array, we are going to have to cast it to
an (E) object because we will be doing a narrowing conversion. For example, in the
getCurrent method, we will have to say

Warnings in Generic Code

The Java compiler issues warnings when it compiles code with generic types to remind us
that we need to be careful in order to avoid code that crashes at runtime. When you have
an array of Objects and you typecast one of the objects to (E), Java will issue a warning
that this is an "unchecked cast." Java is telling you that at runtime it will not be able to
verify that the type of the object matches the type of the return statement or the type of the
variable you are assigning it to (due to erasure). If you are careful in your coding, you will
know that the types will match. You can suppress the Java warnings by putting the
following line just before any method that contains a warning:

Recall that we are not allowed to create arrays of a generic type. Thus, variable arity
methods will generate warnings when they are of a generic type, since Java has to build an
array to hold the values. You can suppress these warnings about variable arity methods
with

above any method that declares a variable arity parameter or any method that calls another
method that has a variable arity parameter list.

 private double[] data;

 private int manyItems;

 private int currentIndex;

 data = new Object[DEFAULT_CAPACITY];

 return (E) data[currentIndex];

 @SuppressWarnings("unchecked")

 @SafeVarargs

108

Using Generic Classes

A program that wants to use a generic class has to tell Java what class will be used for the
generic type parameter. This is called instantiating the generic type parameter. How
would we declare a LinkedSeq of Strings?

Converting Classes to Generic Classes

In the SortedLinkedList lab, you will convert a class to generic. Take your book to lab so
that you can refer to the steps listed on pages 269 – 270. Be sure you understand the
significance of each step. Here is a brief version of the rules:

1. Change the name of the class and append <E> or <T>. Do not put the type
parameter on the names of the constructors.

2. Change any data arrays to arrays of Objects.
3. Wherever the class referred to the original data type of the elements in the

container, change the type to E or T.
4. Change static methods to generic static methods.
5. Use a typecast when you retrieve an element from an Object array.
6. Suppress warnings.
7. If you used == to compare values from the container to each other or to a

parameter, change statements to use equals instead.
8. A generic container stores references. You need to decide whether or not null is a

value you might store in the container. Some methods will need special cases to
deal with such values because you use == to compare to null, but you use equals to
compare to objects.

9. Set unused references in a partially filled array to null.
10. Update all the documentation.

For practice, change this class to a generic class:

public class IntLinkedBag implements Cloneable
{
 private IntNode head;
 private int manyNodes;

 public IntLinkedBag()
 {
 head = null;
 manyNodes = 0;
 }

109

 public void add(int element)
 {
 head = new IntNode(element, head);
 manyNodes++;
 }

 public void addAll(IntLinkedBag addend)
 {
 IntNode[] copyInfo;

 if (addend.manyNodes > 0)
 {
 copyInfo = IntNode.listCopyWithTail(addend.head);
 copyInfo[1].setLink(head);
 head = copyInfo[0];
 manyNodes += addend.manyNodes;
 }
 }

 public void addMany(int... elements)
 {
 for (int i : elements)
 add(i);
 }

 public Object clone()
 {
 IntLinkedBag answer;

 try
 {
 answer = (IntLinkedBag) super.clone();
 }
 catch (CloneNotSupportedException e)
 {
 throw new RuntimeException
 ("This class does not implement Cloneable");
 }

 answer.head = IntNode.listCopy(head);

 return answer;
 }

110

 public int countOccurrences(int target)
 {
 int answer;
 IntNode cursor;

 answer = 0;
 cursor = IntNode.listSearch(head, target);
 while (cursor != null)
 {
 answer++;
 cursor = cursor.getLink();
 cursor = IntNode.listSearch(cursor, target);
 }
 return answer;
 }

 public int grab()
 {
 int i;
 IntNode cursor;

 if (manyNodes == 0)
 throw new IllegalStateException("Bag size is zero");

 i = (int)(Math.random() * manyNodes) + 1;
 cursor = IntNode.listPosition(head, i);
 return cursor.getData();
 }

 public boolean remove(int target)
 {
 IntNode targetNode;

 targetNode = IntNode.listSearch(head, target);
 if (targetNode == null)
 return false;
 else
 {
 targetNode.setData(head.getData());
 head = head.getLink();
 manyNodes--;
 return true;
 }
 }

111

 public int size()
 {
 return manyNodes;
 }

 public static IntLinkedBag union(IntLinkedBag b1, IntLinkedBag b2)
 {
 IntLinkedBag answer = new IntLinkedBag();

 answer.addAll(b1);
 answer.addAll(b2);
 return answer;
 }

}

112

Java Wildcards

There is a hierarchy in the Java API for all the generic collection classes, with a generic
interface named Collection at the top. ArrayList, Vector, LinkedList, and many
other collection classes implement Collection.

Consider the problem of writing a routine that prints all the elements in some collection,
regardless of the type of the element. You might think this would work:

but it wouldn't. That method would only work on collections of Objects, not collections of
subclasses of Object. Collection<Object> is not a superclass of
Collection<Integer> or Collection<String>. What is the supertype of all kinds of
Collections? It is Collection<?>, read "collection of unknown." The ? is called a
wildcard type. The above method, with Collection<?> c in the parameter list, can be
called with any type of collection.

Inside printCollection, you can safely assign elements from the collection of unknown
to type Object since elements of any type are Objects. But you could not write a method
that took a parameter with an unknown type and add arbitrary new elements to it. This
would produce a compiler error.

Suppose you wanted to write a sort method that receives an array of elements to be put in
order. The code for sorting ints, doubles, and Strings should be about the same. It
seems like a good time to use generics, but there are difficulties. To sort, we have to be able
to compare the things we are sorting. If we were comparing ints or doubles, we could
use the less than or greater than symbols, but with generics, we will be working with
objects. Objects often are compared using the compareTo method, as described in the
textbook. The problem is that not all classes implement the compareTo method, and if our
method is called with an array of some type that does not have a compareTo, then our code
won’t work.

 public static void printCollection(Collection<Object> c)
 {
 for (Object e : c)
 {
 System.out.println(e);
 }
 }

 public static void printCollection(Collection<?> c)
 {
 for (Object e : c)
 {
 System.out.println(e);
 }
 }

113

Java allows a special syntax that allows us to specify that the generic must implement a
certain interface:

The strange underlined section above is saying that the sort method is a generic method,
the generic type is T, and that whatever type we substitute for T must either implement the
Comparable<T> interface itself, or a superclass of T implements the Comparable<T>
interface. For example, if the Student class implemented Comparable<Student> and
GraduateStudent was a subclass of Student, then GraduateStudent objects could be
sorted as well as Student objects, even if the GraduateStudent class did not have a
compareTo method.

You can also write generic classes that have a similar requirement:

Explain what that syntax is saying:

 public static <T extends Comparable <? super T>> sort (T[] arrayToSort)
 {
 code for our sort
 }

 public class SortedList<E extends Comparable<? super E>>

114

Iterators (Section 5.5)

Recall from CS 1440 how an iterator was used to visit each item in a collection:

1. How does the code above “get” the new Iterator<String>?

2. What is wrong with the following code?

3. If a collection implements the ________________ interface, then a programmer
can use a for/each loop to iterate over the collection.

4. What one method is required to implement the interface above? Give the signature

for the method. How does that method do its job?

 ArrayList<String> names;
 // code that puts Strings in the ArrayList…

 Iterator<String> itr = names.iterator();
 while (itr.hasNext())
 {
 System.out.println (itr.next());
 }

 int countShortNames = 0;
 int countLongNames = 0;
 Iterator<String> itr = names.iterator();
 while (itr.hasNext())
 {
 if (itr.next().length() < 5)
 countShortNames++;
 else if (itr.next().length() > 10)
 countLongNames++;
 }
 System.out.println ("There were " + countShortNames + " short names and " +
 countLongNames + " long names.");

115

5. Iterator<E> is an interface – not a class. How can a method return an
Iterator<E>?

6. The textbook gave an example of an Iterator for its LinkedBag class that was called
Lister. How did the generic bag class implement the iterator method from the
Iterable interface? See page 298. Note that their cast is not required.

7. What is the difference between the Iterable<E> interface and the Iterator<E>
interface?

8. What methods are in the Iterator<E> interface?

9. The textbook created a class (Lister) that implemented the Iterator for the
LinkedBag as a separate class from the Bag. A more common technique is to create
an inner class – a class inside another class. The only class that can create objects of
this inner class is the outer class. Look at the example of part of a possible
implementation of part of an ArrayList class on the last page of this handout. What
is the name of the inner class?

10. Which class implements the Iterable interface?

11. Which class implements the Iterator interface?

12. What is the remove method supposed to do? (You are never allowed to do two
removes without a next between them.)

116

13. Imagine that the array in an ArrayList contains Integers and is as follows. Trace
how the iterator in the code on the last page of this handout executes the following
code. Take note of how the lastReturnedIndex field is used to make sure that a
remove is always preceded by a call to next.

14. Implementing a remove method is the biggest hassle for a class implementing an
Iterator. It is optional to do a true implementation of a remove in a class
implementing an iterator. What can the remove do instead?

15. In lab, you will be taking a DoubleSortedLinkedList class and (1) changing it to a
generic SortedLinkedList class, and (2) adding an Iterator to the class. There
will be extra credit for students who support a true remove operation. Can you think
of what extra fields or work would be needed to support a remove operation?

55 11 12 17 82 64

 Iterator<Integer> it = list.iterator();
 while (it.hasNext())
 {
 Integer x = it.next();
 if (x % 2 == 0)
 {
 it.remove();

 }
 }

117

public class ArrayList<E> implements Iterable<E>
{
 private int manyItems;
 private Object[] data;
 public ArrayList ()
 {
 manyItems = 0;
 data = new Object[10];
 }
 public Iterator<E> iterator()
 {
 return new ArrListIter();
 }
 // … other ArrayList methods
 private class ArrListIter implements Iterator<E>
 {
 int index; // is equal to manyItems when no current item
 int lastReturnedIndex; // -1 if next has not been called since last remove

 private ArrListIter()
 {
 index = 0;
 lastReturnedIndex = -1;
 }
 public boolean hasNext()
 {
 return (index < manyItems);
 }
 @SuppressWarnings("unchecked")
 public E next()
 {
 if (!(hasNext()))
 {
 throw new NoSuchElementException ("No more items to iterate.");
 }
 lastReturnedIndex = index;
 index++;
 return (E) data[lastReturnedIndex];
 }
 public void remove()
 {
 if (lastReturnedIndex == -1)
 {
 throw new IllegalStateException("Remove called before next");
 }
 for (int i = lastReturnedIndex; i < manyItems-1; i++)
 {
 data[i] = data[i+1];
 }
 data[manyItems-1] = null;
 manyItems--;
 index = lastReturnedIndex;
 lastReturnedIndex = -1;
 }
 }

118

Stacks (Sections 6.1, 6.2)

A stack is a data structure of ordered items such that items can be inserted and removed
only at one end (called the top). Stacks are often given the acronym LIFO (last in, first
out).

The specification of a generic Stack includes the following methods:

• public boolean isEmpty()

• public E peek()

• public E pop()

• public void push(E item)

• public int size()

If a user attempts to peek or pop an empty stack, it results in an error condition called
stack underflow. There is an exception in Java called EmptyStackException that we will
throw from our implementations of peek and pop.

The most interesting thing about stacks is how useful they are! We will study a few
applications in this course but you will see many others in your other courses. First, let's
do some exercises to be sure that you understand how stacks work.

1. List the elements in the order in which they are popped from the stack, given this
series of stack operations: push(5), push(3), pop(), push(2), push(8),
pop(), pop(), push(9), push(1), pop(), push(7), push(6), pop(),

pop(), push(4), pop(), pop(), pop().

119

2. Consider a series of pushes and pops in which you pushed the integers 1, 2, 3 (in
that order). Could you have popped them off in the order 1,2,3? What about 3,2,1?
What ordering of the numbers 1,2,3 would be impossible as the popped order?

3. If you pushed the four number 1, 2, 3, 4, in that order, name some orderings which
would be impossible as the pop order.

4. Suppose a stack has the values {3, 4, 8, 12, 15, 12, 3, 4, 5, 4}, in that order, where 4 is
at the top of the stack. Trace the following method on that stack, and tell what the
stack would look like when the method ends.

 public static <T> void traceThis(Stack<T> stack)
 {
 ArrayList<T> list = new ArrayList<T>();
 T temp;
 while (!stack.isEmpty())
 {
 temp = stack.pop();
 if (!(list.contains(temp)))
 {
 list.add(temp);
 }
 }
 for (int i = list.size() -1; i >= 0; i--)
 {
 stack.push(list.get(i));
 }
 }

120

5. Suppose a stack, myStack, contained the values {5, 3, 1, 2, 4}, with 4 at the top.
What would be the result of the statement, myStack = popAndPush(myStack),
given the following method?

6. Here is a very useful and clever method. Trace its behavior on the following inputs
and say what it returns.

a. mystery(531, 7)

b. mystery(20, 2)

c. mystery(173, 16)

 public static String mystery(int num, int b)
 {
 String digitChar = "0123456789ABCDEF";
 Stack<Character> stack = new Stack<Character>();
 String answer = "";
 do
 {
 stack.push(digitChar.charAt(num % b));
 num /= b;
 } while (num != 0);

 while (!stack.isEmpty())
 answer += stack.pop();
 return answer;
 }

 public static <T> Stack<T> popAndPush(Stack<T> stack)
 {
 Stack<T> newStack = new Stack<T>();
 while (!stack.isEmpty())
 {
 newStack.push(stack.pop());
 }
 return newStack;
 }

121

7. In section 6.2, the author gave us the following algorithm for evaluating a fully
parenthesized infix expression:

initialize a stack of characters

initialize a stack of doubles

while there is more of the expression to read

{

 if the next item in the expression is a number

 {

 read it and push it on the stack of doubles

 }

 else

 {

 read the next char and put it in the variable, symbol

 switch on symbol

 {

 case symbol is an operator:

 push symbol on the stack of characters – break

 case symbol is ')':

 call evaluateStackTops and pass the two stacks – break

 case symbol is '(' : don't do anything – break

 default : throw an IllegalArgumentException

 }

 }

}

if the stack of doubles doesn't have just one thing in it

{

 throw an IllegalArgumentException

}

pop and return the value from the stack of doubles

EvaluateStackTops gets an operator off the stack of characters and gets the top
two values off the stack of doubles. It applies the operator to the values and pushes
the result back on the stack of doubles.

Carry out the operations of the algorithm on the following two expressions:

a. ((12 * 3) + ((20 * 2) 5))

b. ((12 + (((6 * 3) – 10) / 4)) * (5 + 2))

122

Implementations of Stacks (Section 6.3)

Array Implementation

Suppose we decide to implement our stack specification with an array. We want to avoid
ever having to shift elements in the array. Where is the best place to put the top of the
stack?

Suppose our fields are a data array and a count of elements called manyItems.

• private Object[] data

• private int manyItems

The invariant for our design is as follows:

1. The number of items in the stack is stored in the instance variable, manyItems.
2. The items in the stack are stored in a partially filled array called data, with the

bottom of the stack at data[0], the next item at data[1], and so on, to the top of
the stack at data[manyItems-1].

Describe how each of the following methods is implemented and give its big-oh
complexity:

• public ArrayStack()

• public ArrayStack(int initialCapacity)

• public ArrayStack<E> clone()

• public void ensureCapacity(int minimumCapacity)

123

• public void trimToSize()

• public int getCapacity()

• public boolean isEmpty()

• public E peek()

• public E pop()

• public void push(E item)

• public int size()

124

Linked List Implementation

A linked list is a very suitable way to implement a stack since the list can grow and shrink
easily, and the head of the linked list is an efficient place to push and pop. Not using an
array eliminates the need for the methods ensureCapacity, trimToSize, and
getCapacity.

The instance variables of our linked list implementation are:

• private Node<E> top

• private int manyItems

Note that the author chose not to keep the counter, manyItems. Instead, he calls
Node.listLength(top) in the size method. This is an unwise choice in your instructor's
opinion, so we will keep the counter.

Describe how each of the following methods is implemented and give its big-oh
complexity:

• public LinkedStack()

• public LinkedStack<E> clone()

• public boolean isEmpty()

• public E peek()

• public E pop()

125

• public void push(E item)

• public int size()

126

Stack Applications (Section 6.4)

Infix, Postfix, and Prefix
Infix, postfix and prefix notations are three different but equivalent ways of writing
expressions. It is easiest to demonstrate the differences by looking at examples of
operators that take two operands.

• Infix notation: X + Y
 Operators are written in-between their operands. This is the usual way we write

expressions. An expression such as A * (B + C) / D is usually taken to mean
something like: "First add B and C together, then multiply the result by A, then divide
by D to give the final answer."

 Infix notation needs extra information to make the order of evaluation of the
operators clear: rules built into the language about operator precedence and
associativity, and brackets () to allow users to override these rules. For example, the
usual rules for associativity say that we perform operations from left to right, so the
multiplication by A is assumed to come before the division by D. Similarly, the usual
rules for precedence say that we perform multiplication and division before we
perform addition and subtraction.

• Postfix notation (also known as "Reverse Polish notation"): X Y +
 Operators are written after their operands. The infix expression given above is

equivalent to A B C + * D /

The order of evaluation of operators is always left-to-right, and brackets cannot be
used to change this order. Because the "+" is to the left of the "*" in the example
above, the addition must be performed before the multiplication.

Operators act on values immediately to the left of them. For example, the "+" above
uses the "B" and "C". We can add (totally unnecessary) brackets to make this explicit:

((A (B C +) *) D /)

Thus, the "*" uses the two values immediately preceding: "A", and the result of the
addition. Similarly, the "/" uses the result of the multiplication and the "D".

• Prefix notation (also known as "Polish notation"): + X Y
 Operators are written before their operands. The expressions given above are

equivalent to / * A + B C D

As for postfix, operators are evaluated left-to-right and brackets are superfluous.
Operators act on the two nearest values on the right. I have again added (totally
unnecessary) brackets to make this clear:

(/ (* A (+ B C)) D)

127

Although prefix "operators are evaluated left-to-right", they use values to their right,
and if these values themselves involve computations then this changes the order that
the operators have to be evaluated in. In the example above, although the division is
the first operator on the left, it acts on the result of the multiplication, and so the
multiplication has to happen before the division (and similarly the addition has to
happen before the multiplication). Because postfix operators use values to their left,
any values involving computations will already have been calculated as we go left-to-
right, and so the order of evaluation of the operators is not disrupted in the same way
as in prefix expressions.

Write the following completely parenthesized expressions in prefix and in postfix notation.

• ((4 + 5) * (3 – (8 / 4)))

prefix ___

postfix __

• ((8 – (5 * 2)) + (4 * 6))

prefix ___

postfix __

Evaluating Postfix
Here is the author's procedure for evaluating a postfix expression:

Initialize a stack of double numbers.

While there is more of the expression to read

 if (the next input is a number)

 Read the next input and push it onto the stack.

 else

 {

 Read the next character, which is an operation symbol.

 Pop two numbers off the stack.

 Combine the two numbers with the operation

 (using the second number popped as the left operand)

 and push the result onto the stack.

 }

At this point, the stack contains one number, which is the value of the

expression.

Use the algorithm to evaluate the following postfix expressions:

• 12 3 4 + * 2 / 5 – Answer __________________

• 10 9 8 7 5 – / + * Answer __________________

• 14 15 + 12 – 3 * 17 / Answer __________________

128

In any arithmetic expression, what is the proportion of operands to operators?

Converting Infix Expressions to Postfix
Here is the author's algorithm for converting infix expressions to postfix. The infix
expression does not need to be fully parenthesized. Note that this is an easier to
understand piece of pseudocode than the one in the text, so use this one when you
implement your second calculator in the lab.

initialize a stack of characters to hold the operation symbols and parentheses

while there is more of the expression to read

{

 if (the next input is a number)

 read the number and write it to the output followed by space

 else

 {

 read the next symbol

 if the symbol is '('

 {

 push it on the stack.

 }

 else if the symbol is an operator

 {

 while the stack is not empty and

 the char at the top of the stack is not '('

 (it is an operator), and

 the operator at the top of the stack has equal or higher

 precedence than the symbol

 {

 pop the operator off the stack and write it to the output

 }

 push the symbol onto the stack.

 }

 else if the symbol is ')'

 {

 while the stack is not empty and

 the character at the top of the stack is not '('

 {

 pop the operator off the stack and write it to the output

 }

 pop the stack and discard the '('

 }

 else there is an error

 }

}

while the stack is not empty

{

 pop the stack and write it to the output

}

129

Convert the following to postfix using the above algorithm. Show the stack, putting a cross
through the values as they are popped.

18 + 30 / (12 + 3) – 4 Answer: __________________

(20 – (1 + 6) * 2) / (1 + 2) Answer: ___________________

130

Queues (Sections 7.1, 7.2)

A queue is a data structure of ordered items such that items can be inserted only at one end
(called the rear) and removed at the other end (called the front). A queue is often tagged
with the acronym FIFO, first-in first-out. Queues are orderings that people are familiar
with from their everyday lives. We line up in queues to wait for our turn to get food in a
cafeteria, buy tickets at the theater, pay for groceries, and so forth. We get in line at the
end (the rear) and we get to be waited on when we reach the front.

Typically, the specification of a generic Queue includes the following methods:
• public boolean isEmpty()

• public E peek() (sometimes called examine)

• public E remove() (sometimes called dequeue or poll)

• public void add(E item) (sometimes called enqueue or insert)

• public int size()

Unlike the case with Stack<E>, there is no Queue<E> class in the Java library. There is a
Queue<E> interface, however, that is implemented by several Java classes, LinkedList
among them. Programmers who need to declare a Queue typically use the Java
LinkedList class as shown here:

 Queue<Integer> q = new LinkedList<Integer>();

When we discuss the implementations of queues, we’ll see why a linked list is a very
effective data structure for a queue.

While Stacks reverse a series of elements, Queues keep them in the same order. What
does this method accomplish?

 public static <T> void mystery(Queue<T> q)
 {
 Stack<T> s = new Stack<T>();
 T element;
 while(!q.isEmpty()) {
 element = q.dequeue();
 s.push(element);
 }
 while (!s.isEmpty()) {
 element = s.pop();
 q.enqueue(element);
 }
 }

131

Here is an interesting method. Study the code and then answer the following questions.

 public static void main(String[] args)
 {
 Queue<Integer> q = new LinkedList<Integer>();
 Scanner keyIn = new Scanner(System.in);
 for (int i = 1; i <= 5; i++)
 {
 if (keyIn.nextBoolean())
 System.out.print (i + " ");
 else
 q.add(i);
 }
 while (!q.isEmpty())
 {
 System.out.print (q.remove() + " ");
 }
 }

If the user types “true false false true true,” what will the code output?

Is it possible to get the output “1 3 5 4 2”? If so, give an input sequence that produces the
output. If not, explain why not.

List all the inputs that would result in the output “1 2 3 4 5.”

132

Radix Sort

A radix sort can be used to sort data such as telephone numbers, zip codes, product id’s,
and so forth – data that is fixed in length and composed of a known set of characters
and/or digits. Radix sort is implemented with an array of queues, each of which is called a
bucket or a bin. It will better enable us to describe the steps of the algorithm if we describe
the input mathematically, as follows.

Suppose we are sorting a list of fixed-length integers. Suppose each integer is composed of
m digits. We can think of each integer as having the form 𝑑𝑚−1𝑑𝑚−2 … 𝑑2𝑑1𝑑0, where 𝑑𝑚−1
is the most significant digit and 𝑑0 is the least significant.

The program on the next page generates 10 3-digit numbers randomly and inserts them
into a queue. It then passes that queue to the radix sort method, which sorts the queue and
returns it. You can see a sample run of the program here:

Your instructor will show you the 3 stages of a radix sort on the first (unsorted) list of 3-
digit numbers:

133

import java.util.Queue;
import java.util.LinkedList;

public class RadixSort
{
 public static void main(String[] args)
 {
 Queue<Integer> data = new LinkedList<Integer>();
 for (int i = 0; i < 10; i++)
 {
 data.add((int) (Math.random() * 999) + 1);
 }
 System.out.println(data);
 System.out.println();

 data = radixSort(data);
 System.out.println(data);
 }

 public static Queue<Integer> radixSort(Queue<Integer> data)
 {
 // make the buckets
 Queue<Integer>[] bucket = new LinkedList[10];
 for (int i = 0; i < 10; i++)
 bucket[i] = new LinkedList<Integer>();
 int index;
 int x;
 int placeValue = 1; // start in the 1’s column

 for (int stage = 0; stage < 3; stage++) // for each digit
 {
 // distribute the values into the buckets
 while (data.size() > 0)
 {
 x = data.remove();
 index = x / placeValue % 10;
 bucket[index].add(x);

 }
 // empty the buckets and reassemble the queue
 for (int i = 0; i < 10; i++)
 {
 while (bucket[i].size() > 0)
 {
 data.add(bucket[i].remove());

 }
 }
 placeValue *= 10; // go to the next column
 }
 return data;
 }
}

134

Now suppose we are sorting 15-letter strings with each letter in the range [a – z] using
radix sort.

How many stages would there be in the algorithm?

How many buckets would be needed?

How could we index into an array, based on a letter of the alphabet?

What if some of the strings were shorter than 15 characters? How could we handle the
mixture of strings of varying lengths?

The complexity of a radix sort is O(m(n + b)), where b represents the number of buckets, n
is the number of data items to be sorted, and m is the length of each data item.

What is the complexity of sorting n social security numbers?

Why might radix sort be called a linear sort?

Java syntax note:

Arrays of Stacks or Queues or LinkedLists are very useful. Java gives compile time
errors when we try to create arrays of generic types. Did you notice the line in the above
program that looks like this?

 Queue<Integer>[] bucket = new LinkedList[10];

Compare it to this line:

 bucket[i] = new LinkedList<Integer>();

To avoid syntax errors, do not use the generic type when you make a new array of some
generic container type.

135

136

Queue Implementations (Section 7.3)

We will examine both an array implementation of a queue and a linked list
implementation.

Array Implementation – Circular Array

We want to have an (amortized) complexity of O(1) for add and remove. Therefore, we
can’t do any shifting of the elements in the array. The only time we will tolerate an O(n)
operation is when we have to grow the array prior to completing an add, and if that
happens only rarely, we can amortize it away. We can achieve our efficient adds and
removes with a circular array.

We keep two indexes, front and rear. Every time we add an element, we increment the
rear index. Similarly, every time we remove an element, we increment the front index.
Over time the section of the array that contains the elements of the queue moves toward
the end of the array. To reuse the unused space at the beginning of the array, we think of
the array as circular. When an index variable (front or rear) reaches the end of the array,
we wrap it back around to the beginning.

To reiterate, what are the fields for the ArrayQueue?

Suppose a queue with capacity 10 is being used, and at the present time it contains the
Integers 6, 8, 4, 2, and 14, added in that order. Further suppose that manyItems = 5,
rear = 2, and front = 8. Draw the corresponding array.

137

Suppose a queue has been implemented as an array as described above. Draw the data
array after the following operations have been performed.

 String[] words = {"one", "two", "three", "four", "five", "six"};
 ArrayQueue<String> queue = new ArrayQueue<String>();
 for (int i = 0; i < words.length; i++)
 {
 queue.add(words[i]);
 if (i % 3 == 2)
 queue.remove();
 }
 queue.remove();
 queue.remove();
 for (int i = words.length-1; i >=0; i--)
 queue.add(words[i]);

The author uses a private helper method called nextIndex to increment both front and
rear. He uses the method as follows:

 front = nextIndex(front);

This method adds 1 to the index it receives and returns that new value unless the new value
has gone off the end of the array. In that case, the method returns 0. There are various
ways to implement the nextIndex method. Let’s write three.

138

Linked List Implementation

For the linked list implementation of a queue there are three instance variables:

• int manyNodes

• Node<E> front

• Node<E> rear

It is efficient to both add and remove nodes from the head end of a singly-linked list. It is
efficient to add nodes to the tail end. However, it is not efficient to remove nodes from the
tail. Why not?

With this in mind, which end of a linked list should we use for the front of the queue and
which end should we use for the rear?

Describe the implementations of each of the following methods in a LinkedQueue
implementation.

• public void add(E element)

• public E remove()

• public int size()

• public Boolean isEmpty()

• public E peek()

139

Fill in the following table, showing the big-Oh evaluation for the method with the given
implementation.

 ArrayQueue LinkedQueue

add(E element)

remove()

isEmpty()

size()

peek()

A deque (pronounced "deck") is a structure in which you can both add and remove from
either the front or the rear. Suppose you wanted to change the ArrayQueue or the
LinkedQueue to an ArrayDeque or a LinkedDeque. Comment on the way you would
implement each of the following operations:

a. adding to the front of an array deque

b. removing from the rear of an array deque

c. adding to the front of a linked list deque

d. removing from the rear of a linked list deque

140

Exam 2 Study Guide

Chapters covered: 4 (Linked Lists), 5 (Generics), 6 (Stacks), 7 (Queues)
Remember that you can have a reference sheet, so make yourself a good one.

1. Know how to get random integers in any range.
2. Understand the IntNode class from the text (and other such Node classes, including

the generic Node class). Know what methods the class has and how those methods do
their jobs. Be able to use those methods to insert nodes into a linked list, remove
nodes from a linked list, copy all or part of a linked list, and so forth. Understand the
big-oh complexity measurements of each of the methods.

3. Know how the IntLinkedBag class works and how it was implemented.
4. Know how the DoubleLinkedSeq class works and how it was implemented.
5. Know the advantages and disadvantages of array and linked list implementations of

container classes.
6. Understand the Java wrapper classes.
7. Know how to write generic methods.
8. Know how to convert a container class into a generic class.
9. Understand how to use an iterator and how to create one. Be able to explain when to

implement the Iterator interface and when to implement the Iterable interface. Know
the methods of each of those interfaces.

10. Know how stacks work and how to implement them both with arrays and with linked
lists.

11. Know how to convert infix to postfix, both by hand and with code.
12. Know how to evaluate a postfix expression.
13. Know how queues work and how to implement them both with circular arrays and

with linked lists.
14. Know how radix sort works and how to run it on a list of k-digit integers.

141

142

Recursion (Sections 8.1, 8.3)

From your reading of chapter 8, answer the following questions.

1. What is a recursive method?

2. When should you consider using recursion?

3. A recursive algorithm should always have a base case. What is meant by a base case?

4. A recursive call should always be with a simpler instance of the problem, i.e., the
recursive call should always be closer to a base case. Give an example of a recursive
call from your reading, and tell in what way the call was simpler.

5. What is wrong with each of the following attempts to write a recursive method? Can
you fix each?

 // prints a linked list of Strings in reverse
 public void printInReverse(Node<String> r)
 {
 printInReverse(r.getLink());
 System.out.println(r.getData());
 }

 // Fibonacci Numbers
 // fib(0) = 1, fib(1) = 1
 // otherwise, fib(n+1) = fib(n) + fib(n-1)
 public static int fib (int n)
 {
 if (n < 2)
 return 1;
 else
 return fib(n+1) - fib(n-1);
 }

143

6. Study this method and then answer the questions below.

 public String seenThisBefore(int n, int b)
 {
 String digit = "0123456789ABCDEF";
 if (b > n)
 return "" + digit.charAt(n);
 else
 return "" + seenThisBefore(n / b, b) + digit.charAt(n % b);
 }

a. What is the base case of the method?

b. What does the method return when you call it with n = 10 and b = 2?

c. What does the method do?

d. When did you see an equivalent method before?

7. What is meant by an execution stack or a run-time stack? What is meant by an
activation record?

144

8. What does this method do if it is called with 825?

 public static void bedtimeStory (int time)
 {
 if (time >= 830)
 System.out.println("OK, brats. Get to bed!");
 else
 {
 System.out.println("It was a dark and stormy night,");
 System.out.println("and a bunch of spoiled children were");
 System.out.println("trying to avoid bedtime.");
 System.out.println("One of them said, 'Dad tell us a story,'");
 System.out.println("and Dad said: ");
 bedtimeStory(time+1);
 System.out.println("THE END!");
 }
 }

9. Tracing recursive methods is the beginning of a full understanding of recursion.
Writing your own recursive methods is the next step. Let's write a recursive method,
numToNames, that converts a positive integer to a String with word names for the
digits. For example, numToNames(372) returns the String "three seven two."

What should be the base case?

What should be the recursive call? Be sure that it makes progress toward the base
case.

Now put the method together.

145

10. Write a recursive method that finds the sum of the digits of a non-negative integer.
You can use the same base case and a similar recursive call to what you used
previously before.

11. Sometimes when you are working with recursion it is useful to send extra parameters
that specify the subtask. For example, here is a recursive method for finding the sum
of an array. The method finds the sum from a starting index to the end.

 public int sumArray(int index, int[] array)
 {
 if (index >= array.length)
 return 0;
 else
 return array[index] + sumArray(index+1, array);
 }

Usually a non-recursive version of the method calls the recursive method with the
initial parameters.

 public int sumArray(int[] array)
 {
 return sumArray(0, array);
 }

Write a recursive method, isPal, that determines whether a String is a simple
palindrome made of letters [a – z]. Palindromes are strings like "dad", "mom", "toot",
and "madamimadam," i.e., strings that are spelled the same way forward and
backward. The recursive method will take a String and a left and right index as
arguments. Also write a non-recursive method that receives just the String and
makes an appropriate call to the recursive method.

146

public boolean isPal(String str, int left, int right)

public boolean isPal(String str)

12. The towers of Hanoi is a famous puzzle with a recursive solution. The puzzle consists
of three poles and a collection of rings that stack on the poles. The rings are different
sizes and are stacked in decreasing order of their size on the first pole. The second
and third poles are empty. The goal is to move the rings from the first pole to the
second pole, one at a time, under the restriction that you cannot put a larger ring on
top of a smaller one. You can use the third pole to hold rings temporarily.

Your instructor will show you an algorithm that you can use to solve the puzzle by
hand.

147

This recursive method will print out instructions for solving the puzzle. Trace its
behavior on the calls solveIt(2, "1", "2", "3") and solveIt(3, "1", "2", "3").

 public void solveIt(int numRings, String start, String end,
 String temp)
 {
 if (numRings == 1)
 System.out.println ("From " + start + " to " + end);
 else
 {
 solveIt(numRings-1, start, temp, end);
 System.out.println ("From " + start + " to " + end);
 solveIt(numRings-1, temp, end, start);
 }
 }

Figure out how many moves are needed for the following numbers of rings.

Number of Rings Number of Moves

1

2

3

4

n

148

Sequential and Binary Search (Section 11.1)

Sequential Search

Sequential search is the technique you have to use when the data you're searching through
is in no particular order. Think about a box of baseball cards that are not organized in any
way. In order to find your favorite Mickey Mantle card, you'll have to start at the beginning
and look through all the cards until you either find it or you have examined the entire box
and not located the card.

Write a sequential search method, given the following description and method signature:
 /** Search a portion of an array for a target
 * @param arr the array to be searched
 * @param first the index to start the search
 * @param size the number of elements to be searched
 * @param target the element to search for
 * @return the index of the first occurrence of the target or -1 if not there
 */
 public static int search (Object [] arr, int first, int size, Object target)

What is the big-oh complexity of an unsuccessful sequential search? ______________

What is the big-oh complexity of a successful sequential search? _________________

There are other common method signatures for a sequential search:

• // search the entire array for the first occurrence of target

public static int search(Object[] array, Object target)

• // search between firstIndex (inclusive) and lastIndex (inclusive)

public static int search(Object[] array, int firstIndex, int

lastIndex, Object target)

• // search between firstIndex (inclusive) and lastIndex (exclusive)

public static int search(Object[] array, int firstIndex, int

lastIndex, Object target)

The searches in the textbook use arrays of ints. You can use the comparison operators (==,
<=, <, >=, >, !=) with ints. If you are going to perform a sequential search on an array of
objects from some class, you should make sure that the class has a _______________
method.

149

Binary Search

If you have sorted your set of baseball cards, you will have a much easier time finding a
particular card. Binary search is a method that works roughly like this on a sorted set of
baseball cards:

1. If your unsearched set is empty, declare failure. If there is at least one card left in
the unsearched portion of your set, see if what you're looking for is the "middle"
card.

2. If it is, you've found it.
3. If it is not, and the middle card comes after the one you're looking for, restrict your

search to the left half of the set and go to step 1.
4. If it is not, and the middle card comes before the one you're looking for, restrict your

search to the right half of the set and go to step 1.

Binary search on a computer is best done in arrays. Here is the textbook's recursive binary
search using generics:

 public static <T extends Comparable<? super T>> int binarySearch
 (T[] arr, int first, int size, T target)
 {
 if (size <= 0)
 return -1;
 int middle = first + size/2;
 int value = target.compareTo(arr[middle]);
 if (value == 0)
 return middle;
 if (value < 0)
 return binarySearch(arr, first, size/2, target);
 return binarySearch (arr, middle+1, (size-1)/2, target);
 }

What are the two base cases that the algorithm checks?

If the algorithm is called with an even size, is the middle element the last element in the
first half, or the first element in the second half?

If the size is an even integer, how many elements are before the middle element?

If the size is an even integer, how many elements are after the middle element?

If the size is an odd integer, how many elements are before the middle element?

If the size is an odd integer, how many elements are after the middle element?

150

Consider the following array. Finish filling in the second row to show how many array
accesses are needed to find an element at that index. For example, if we searched for 414,
we would first look at index 7, then 11, then 13, and finally find it at index 12. That would
be 4 accesses.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Elements -20 4 12 22 41 42 45 48 78 90 111 403 414 508 902

Accesses 1 2 4 3

On a sorted array with n elements, what is the highest number of accesses needed for a
successful binary search?

On a sorted array with n elements, what is the highest number of accesses needed for an
unsuccessful binary search?

What is the complexity of binary search?

Suppose a sorted array had 8 billion elements (more than the current population of the
world). How many array accesses, worst case, would be necessary to find a target element
using a binary search?

Suppose the banner id's of the 48 students in a course are stored in an unsorted array.
Using a sequential search, how many array accesses, worst case, would be necessary to find
a target id in the array?

The Arrays class in the Java library has many versions of binary search. There are versions
with primitives and versions with objects. They tend to be in one of the following two
forms:

• //search the entire array for the first occurrence of key

public static int binarySearch(Object[] arr, Object key)

• //search between fromIndex (inclusive) and toIndex(exclusive)

public static int binarySearch(Object[] arr, int fromIndex, int

toIndex, Object key)

151

Here is the section of the API for the second version:

What value does the Arrays binarySearch return for an unsuccessful search?

Give the value returned for binarySearch(arr, 0, 15, 88) using the sorted array on the
previous page.

The return value is supposed to give some information about where the value would fit in
the array to maintain sortedness. It would seem more intuitive to return -9, since 88
would go into position 9 in the array. Why doesn't the method return -9?

152

Not all versions of binary search are recursive. Study this implementation:

 public static <T extends Comparable<? super T>> int binarySearch (T[] arr,
 T target)
 {
 int lowIndex = 0;
 int highIndex = arr.length - 1;
 int middleIndex, value;
 // search between lowIndex and highIndex, inclusive
 while (lowIndex <= highIndex) {
 middleIndex = (lowIndex + highIndex)/2;
 value = target.compareTo(arr[middle]);
 if (value == 0) // target equals the middle element
 return middleIndex;
 if (value < 0) // target before middle element
 highIndex = middleIndex – 1;
 else
 lowIndex = middleIndex + 1; // target after middle element
 }
 return -1; // not there
 }

Search for 88 in this array

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-20 4 12 22 41 42 45 48 78 90 111 403 414 508 902

What value could be returned in the last line to indicate "not there" if we wanted this
method to do the same thing as the Arrays.binarySearch?

Complexity

What makes a method have O(log n) complexity? Dividing by 2 at each step until a base
case < 1 is reached (the halving function in the book) leads to log2n steps. Dividing by 3 at
each step leads to log3n steps. Logarithmic algorithms divide the work by a certain amount
at each step. They are very fast algorithms, and often appear to run in constant time.

Contrast logarithmic algorithms with exponential algorithms, e.g., O(2n). Exponential
algorithms multiply the amount of work at each step. These algorithms grow so fast that
relatively small data sizes cannot be handled by even the fastest computers.

153

154

Quadratic Sorting Algorithms (Section 12.1)

Selection Sort

Selection sort works by repeatedly finding the smallest item in the unsorted portion of the
array and swapping it into its correct position. The unsorted portion then decreases by one
element. The sorted portion builds up from data[0] through data[n-1], one element at
a time. Your instructor will show you how selection sort works on the following data array.

100 25 -12 82 16 179 -85 -212 75 14

Note that the author of our book chooses to find the largest element in the unsorted
portion of the array at each step and swap it into its correct position at the right-hand end
of the array.

Complexity analysis of selection sort:

At the first step, how many comparisons are done to find the smallest item? _________

At the second step, how many comparisons are done to find the smallest item? ________

In the last step, how many comparisons are done to find the smallest item? _________

What is the solution to this equation?

∑ 𝑖

𝑛−1

𝑖=1

What is the worst-case and best-case complexity of selection sort? ______________

Write a method called minimumPosition which receives an array of ints and an index
from which to begin the search, and which returns the index at which it finds the minimum
value in that portion of the array.

155

private static int minimumPosition(int[] array, int from)

{

}

Insertion Sort

Insertion sort maintains a sorted portion of the array at the beginning of the array, just as
selection sort does. This sorted portion grows by one element at each step, but the way it
grows is different from the way it grows in selection sort.

At each step, insertion sort examines the first element in the unsorted portion of the array
(call it current), and shifts elements from the sorted portion to the right in order to insert
current into its proper place in the sorted portion.

Here are elements in an array. The vertical line marks the divide between the sorted
portion and the unsorted portion. At the very beginning, the sorted portion contains only
one element.

15 12 3 7 10 14 17 11 2

Now it is time to put 12 into its proper position. Imagine pulling 12 out, then sliding 15
over one to the right and putting 12 back in at the beginning. Now the array looks like this,
and the sorted portion has grown by one element:

12 15 3 7 10 14 17 11 2

At the next step, 3 comes out then 15 slides over one, 12 slides over one, and 3 goes back in
at the beginning. Finish running the algorithm on this array.

12 15 3 7 10 14 17 11 2

156

Complexity analysis of insertion sort

Let's think worst case (which happens when the array is already sorted, but it's sorted in
reverse.)

How many comparisons happen in the first step? ______

In the second step? _______

How many comparisons happen in the very last step, when you have to put the element at
data[n-1] into its proper position? _______

What is the worst case complexity of insertion sort? _________________________

Unlike selection sort, which always does the very same thing regardless of how the data
comes in, insertion sort performs very well if the data happens to already be sorted. In this
case, insertion sort never does any shifting at all. How many comparisons of one element
to another would insertion sort have to do if the data comes to it already sorted?

It is sometimes the case that an application keeps a data set sorted, but periodically tacks
on new data at the end of the array. If this is how data is managed, insertion sort is an
excellent choice for a sorting algorithm to re-establish the sortedness of the data. Why?

Bubble Sort

Trace this loop on the data below.

 for (int j = 0; j < data.length – 1; j++)
 {
 if (data[j+1] < data[j])
 {
 temp = data[j];
 data[j] = data[j+1];
 data[j+1] = temp;
 }
 }

22 70 13 91 -5 43 51 85 2 15 49

What does the code do to the array of data?

157

Now suppose that we run this loop again and again. Can we eventually sort the array using
this basic idea?

How might we save some steps?

Now let's count comparisons, assuming that we stop at the end of the unsorted portion at
each pass.

How many comparisons are done in the first step? ________

In the second step? _______

So we again have a sum from 1 to n-1, giving bubble sort a complexity of ____________.

Rewrite the above loop so that it starts at the end of the array and bubbles the smallest
element to the beginning. That's what you will have to do in our lab this week.

158

Mergesort (Section 12.2)

Steps of the Algorithm:
1. Divide the list in half evenly.

2. Base case: If the portion of the list to sort is less than two items, just return.

3. Call Mergesort recursively to sort the first half of the list.

4. Call Mergesort recursively to sort the second half of the list.

5. Merge the two sorted lists.

Notes:

1. Arguments to the Mergesort method: the list to be sorted, the left index of the

portion of the array to be sorted, and the number of elements to sort. Mergesort

would initially be called with the data array, index 0, and data.length, assuming we

wish to sort the entire list.

2. If the list doesn’t divide evenly, the second recursive call gets the one extra (it really

doesn’t matter which one does).

3. Since we are using recursion, we need a base case for falling out of the recursion.

The base case happens when the list has fewer than two elements.

4. One smart thing, which your book does not do, is to do a quick check after the

recursion to see if the largest item in the first half of the list is less than or equal to

the smallest in the second list. If so, then the list is already sorted, then no merge is

needed. This seems unlikely, but if the data had already been sorted, then the

complexity of the sort is improved.

5. The book’s code calls a non-recursive merge method that merges the two halves

using a temporary array. Then it copies back to the original array. This seems

inefficient, but it is the standard way that Merge Sort is done. The copying does not

increase the big-Oh of the merge portion of the code.

Merge:

The parameters to the merge method are the data array, the index where the first half

begins, the number of elements in the first half, and the number of elements in the second

half.

Imagine that we have recursively sorted two halves of the following array and we want to

merge the two parts into a temporary (sorted) array and then copy the contents of the

temporary array back to the original. We keep three indexes. Let's do the work.

temporary array:

15 32 34 45 56 72 12 35 39 55 81 89 95

159

Notes:

1. As long as both lists still have elements to merge, the tops of the two sorted sublists

are compared, and the smaller element is placed into the temporary array. Three

indices are needed to keep track of where we are in each of the arrays.

2. We come out of the while loop when one of the lists is empty.

3. If the first list still has elements, copy the rest of the first list to the temporary array.

4. If the second list still has elements, there is no need to copy them to the temporary

array, because they are already in the correct spots in the data array.

5. Copy the temporary array back to the original. You should only copy back the

elements that were put into the temporary array during this recursive call.

6. Many times an overloaded non-recursive Mergesort with fewer parameters is set up
to initialize the algorithm. A normal argument for a sort is the array to be sorted.
Here is a non-recursive Mergesort that has only the data array as a parameter. It
calls the recursive one with the appropriate values to sort the entire array.

 public static <T extends Comparable<?super T>> void mergeSort(T [] data)
 {
 mergeSort(data, 0, data.length);
 }

Using Recursion Tree to Illustrate Merge Sort

Page 638 of your book shows a general recursion tree (with empty rectangles to show how

the data array is divided up. Draw the tree of recursive calls performed by Mergesort

during the process of sorting the following data array. Show the recursive calls performed

by the Mergesort during the process of sorting the following array:

73 35 22 88 41 122 101 54 73 66

160

Complexity of Mergesort

Recursive algorithms often are called divide-and-conquer algorithms because they divide

the work into smaller problems of the same type, solve the problems on the smaller data

(with recursion), and finish conquering the problem by combining the results from the

sub-problems.

Book’s Informal Analysis: The book argues that we do O(n) work at each level of the

recursion tree (almost all elements are involved in a merge at each level of the tree). So the

complexity is the work at each level multiplied by the number of levels of the tree. How

many levels are there in the recursion tree for an array with n elements? _______.

The number of levels in the recursion tree is the same best case and worst case. The

complexity for Mergesort is ____________.

The informal analysis is a good way of thinking about the complexity of Mergesort. Here is

a more advanced analysis using recurrence equations. It is okay if you do not understand

perfectly. See how much you can get.

 First let's review functions. Consider the function T(n) = n2 + sqrt(n).

• What is T(4)? ______________

• What is T(x)? ______________

• What is T(
𝑛

2
)? ______________

What about a recursive function like the following?

T(1) = 1

T(n) = 3 * T(
𝑛

2
) + n2, for n > 1.

• What is T(2) _________________

• What is T(x) for x > 2, _____________

• What is T(
𝑛

2
) for

𝑛

2
 > 2, __________________

Our first step in analyzing Mergesort is to write a function T(n) describing the time it takes
Mergesort to sort n items.

Consider the four broad original tasks:

1. Divide the list in half.
2. Recursively sort n/2 items.
3. Recursively sort another n/2 items.
4. Merge the items.

161

Task 1 (Dividing): Dividing the list in half is constant with respect to the size of the list. It
takes the same amount of time for a computer to find the middle of the list, no matter what
the size of the list is. (Note that it would not be constant for a linked list.) So this step
takes O(1) time.

Task 4 (Merging and Copying): Consider one step in the merge to be “look at the top of the
two lists, and put the smaller item onto the new list." This one step takes constant time.
How many times do we do this step on a list of size n? Sometimes we can save a few
comparisons, but worst case we have O(n) steps to copy elements into the temp array. We
also have O(n) steps to copy the temp array back to the original.

Tasks 2 and 3: How long does the recursion take? We will describe the recursion time
using our function T. The time it takes to sort a list of size n is T(n). The time it takes to

sort half the list is T(
𝑛

2
).

T(n) = O(1) + O(n) + 2T(
𝑛

2
)

Clearly O(n) is greater than O(1), so we can disregard O(1). But what about 2T(
𝑛

2
)? How do

we turn this into an order of complexity?

We need to solve this recurrence relation.
STEP 1:

T(n) = 2T(
𝑛

2
) + n

STEP 2:

What is T(
𝑛

2
)? Go back to the original function description and plug in

𝑛

2
 for n.

T(
𝑛

2
) = 2T(

𝑛

4
) +

𝑛

2
.

Substitute: this into the original equation

 T(n) = 2 T(
𝑛

2
) + n

 = 2 (2 T(
𝑛

4
) + (

𝑛

2
)) + n

 = 4T(
𝑛

4
) + n + n

 = 4T(
𝑛

4
) + 2n

STEP 3: What is T(
𝑛

4
)? T(

𝑛

4
) = 2T(

𝑛

8
) +

𝑛

4
. Substitute again.

T(n) = 4T(
𝑛

4
) + 2n

 = 4 (2 T(
𝑛

8
) + (

𝑛

4
)) + 2n

 = 8T(
𝑛

8
) + n + 2n

 = 8T(
𝑛

8
) + 3n

Do you see a pattern? On the first step, there was a 2 being multiplied times the T value
and there was a 2 in the denominator of the T parameter. On the second step, those values
were 4's. On the third step, those values were 8's. They are all powers of 2. And whatever

162

power of 2 we have in those two places, we are multiplying n by the power. What will
happen at the kth step? Fill in the simplified form at step k (think of k as the power).

STEP k:

T(n) = _____T (
𝑛

) + ____ n

To solve the recurrence, we want to get rid of the recursion in the formula. We need a base
case! Ah, we have one. We know T(1), the time Mergesort takes on a list of size 1. That is

constant time. We will recurse until we hit the base case where T(
𝑛

2𝑘) will be T(1). That

happens when the numerator n equals the denominator 2𝑘.

When does n = 2k? When k = log2 𝑛. At step log2 𝑛, we can get out of the recursion.

STEP log2 𝑛:
T(n) = n T(1) + (log2 𝑛)(n) = n constant + n log2 𝑛

Which is larger? n constant or n log2 𝑛? The latter! So the algorithm is O(nlogn).

To set up a recurrence equation for the time of a divide-and-conquer recursive algorithm:

T(n) = cost of dividing into subproblems +
 cost of recursion +
 cost of combining the recursive solutions

Since the code for the dividing and the code for the combining are non-recursive, we can
see which is greater, and select it.

T(n) ≤ constant * max(cost of dividing, cost of combining) + cost of the recursion

If the recursive calls are all on approximately the same size data:
T(n) = max(cost of dividing, cost of combining) + a T(n/b)
Here, a and b are variables: The variable a refers to the number of recursive calls, the n/b
refers to the size of the data worked on by the recursive calls. Note that Mergesort’s
combining was the costliest of dividing vs. combining. Next time we’ll see Quicksort. It
has a constant combine, but a more costly divide.

163

164

Quicksort (Section 12.2)

The General Algorithm:
1. Select an element that might be the median element. Call it pivot
2. Change the array around so that elements less than (or <=) the pivot are put on the

left side of the array, and elements greater than (or >=) the pivot are put on the
right side of the array.

3. Put the pivot element where it belongs (everything to the left of the pivot is <= pivot
and everything to the right of the pivot is >= the pivot).

4. Recursively sort the part of the array that is left of the pivot location.
5. Recursively sort the part of the array that is right of the pivot location.

Notes:

1. The parameters to Quicksort are the array, the first index (where sorting should
begin), and the size n (the number of elements to sort).

2. Since this method is recursive, there must be a base case. The book’s base case
occurs if there are fewer than two elements. If there are fewer than two elements,
Quicksort returns. (Let me suggest another base case: if there are two elements, the
elements are swapped if they are out of order, and then Quicksort returns.)

3. Otherwise, the partitioning begins (partitioning is a term used for dividing the array
into parts: the elements less than (or equal to) the pivot first, then the pivot, and
finally the elements greater (or equal to) the pivot. Although it seems counter-
intuitive, allowing duplicates to go either to the left or the right is best if there are
lots of duplicates.

4. Steps 1, 2, 3, and 4 are the partitioning part, and the author of the code puts them
into a separate method called partition. The partition method does almost all of the
work of the algorithm. It picks a pivot, puts smaller elements (and perhaps some
duplicates) to the left, the larger (and perhaps duplicates) to the right, and then puts
the pivot in place. It also returns the index where the pivot ends up. We will discuss
that method below.

5. After partition does its work, Quicksort recursively sorts the part of the array that is
to the left of the pivot, and recursively sorts the part of the array that is to the right
of the pivot. Once the recursion is done, Quicksort returns.

6. Some implementations of Quicksort have a much broader base case. They will call
another sort on the data when the size of the subarray is less than some value, say 10
or 15. They will run an Insertion Sort or other simple sort on the small sub-lists.
Let’s use two or less as the base case for now.

Partition (a slightly different implementation than the book describes)

1. The first task of the partition method is to choose a pivot. The goal is to choose an
element that would be the real middle when this portion of the array is sorted. Our
textbook uses the first element. This method will produce a very poor pivot if the
array is already sorted. Instead, we will use the medianOf3 algorithm: sort the first,
middle, and last element in the portion of the array, and choose the middle element
as the pivot. Even though the pivot may be poor occasionally, it is unlikely that the
pivot will continue to be poor each time. Other implementations of Quicksort may
use different algorithms for choosing the pivot.

165

2. We will swap the middle element (pivot) with the second element from the end (this
is sometimes called hiding the pivot, but we’ll remember where it is). From now on,
we will basically use the pseudocode from the text.

3. Instead of using a temporary array, Quicksort implementations use a clever method
to put the smaller elements before the larger ones. They scan from the left of the
array (actually the left of the portion to be sorted) until they find something greater
than or equal to the pivot. The code uses the index variable tooBigIndex. Then they
scan down from the right, using variable tooSmallIndex, until they find something
less than or equal to the pivot. Then the values at tooBigIndex and tooSmallIndex
are swapped.

4. This scanning procedure then continues with tooBigIndex moving up from its
current position and tooSmallIndex moving down. Finally when tooBigIndex and
tooSmallIndex cross, we’re done.

5. The pivot is then put in place. Its place is where the tooBigIndex variable is, so to
put the pivot in place, the last-1 element is swapped with the tooBigIndex element.

Try out the partition method described above, called with partition(data, 0, 15), on
the three arrays shown below. Show how the data ends up at the end of the partition
method. Also, specify the return value from partition. The code for partition is shown on
the next page.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
100 38 50 77 19 27 2 48 46 95 104 -8 15 55 30

 Pivot = ____ Return Value = ____

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
40 9 71 52 14 22 60 68 58 100 6 90 1 -10 60

 Pivot = ____ Return Value = ____

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
93 2 -14 99 119 89 102 122 -12 95 90 741 -6 80 -10

 Pivot = ____ Return Value = ____

166

 public static int partition(int [] data, int first, int n)
 {
 // Step 1: sorts the first, middle, and last elements
 int mid = first + n/2;
 int last = first + n - 1;
 if (data[mid] < data[first])
 swap (data, first, mid); // swaps data[first] with data[mid]
 if (data[last] < data[mid])
 swap (data, mid, last);
 if (data[mid] < data[first])
 swap (data, first, mid);

 int pivot = data[mid];
 // hide the pivot in the second to the last position
 swap(data, mid, last-1);

 int tooBigIndex = first+1;
 int tooSmallIndex = last-2;

 for (;;)
 {
 while (data[tooBigIndex] < pivot)
 tooBigIndex++;
 while (data[tooSmallIndex] > pivot)
 tooSmallIndex--;
 if (tooSmallIndex <= tooBigIndex)
 break;
 swap (data, tooBigIndex, tooSmallIndex);
 tooBigIndex++;
 tooSmallIndex--;
 }

 // put the pivot in its place in the array
 data[last-1] = data[tooBigIndex];
 data[tooBigIndex] = pivot;
 // return the index where the pivot ends up
 return tooBigIndex;
 }

 public static void quickSort(int[] data, int first, int n)
 {
 int pivotIndex;
 int n1, n2;

 if (n <= 1)
 return;
 if (n == 2)
 {
 if (data[first+1] < data[first]) {
 swap (data, first, first+1);
 }
 return;
 }
 pivotIndex = partition(data, first, n);
 n1 = pivotIndex - first;
 n2 = n - n1 - 1;
 quickSort(data,first,n1);
 quickSort(data,pivotIndex+1, n2);
 }

167

Complexity of Quicksort

1. Choosing the pivot is O(_____).
2. Handling the base case(s) is O(______).
3. The code for partition has nested loops, so it looks perhaps O(n2), but we don’t look

at each of the elements every time through the outer loop. We basically look at each
element once. The method partition is O(______).

4. What about the recursion? We called the recursion twice, each time with a smaller
array. Suppose we were fortunate enough to split the list in half every time, so that
the recursion was called once on the first half, and then on the second half.

T(n) = cost of stuff before calling partition + cost of partition + recursivePart

T(n) = O(1) + O(n) + 2T(
𝑛

2
)

Where have we seen this before? It is the same recurrence as Mergesort. This time we did
O(n) work before the two recursive calls, and constant afterward. With Mergesort one does
constant work before the recursive calls, and O(n) afterwards.

The complexity of Quicksort depends on a good split of the data. IF we did a bad split,
instead of splitting the list into two equal parts, we could split the list into one list of size
n-1. The other list would be easy to sort (a base case), but then we get this recurrence.

T(n) = O(1) + O(n) + complexityofSortingBaseCase + complexityofSortingRest
T(n) = O(1) + O(n) + O(1) + T(n-1)

Let’s solve: T(n) = T(n-1) + n --- What is T(n-1) ? T(n-1) = T(n-2) + n-1.
 = T(n-2) + n-1 + n
 = T(n-3) + n-2 + n-1 + n
 = T(n-4) + n-3 + n-2 + n-1 + n
 …
 = T(n-(n-2)) + 3 + 4 + 5 + … + n-3 + n-2 + n-1 + n
 Remember we know T(2). It is a base case, and constant.
 = approximately the sum of the numbers from 1 to n: O(n2)

With some statistical analysis that we will not do, it can be shown that on average

Quicksort does constant O(nlogn) work. It is quite a challenge to find data that makes
the Quicksort behave badly, when the medianOf3 pivot choice is made. Even if the pivot is
poor the first time, to get the O(n2) behavior, bad pivots need to be chosen again and again.
If the first element is chosen as the pivot, it is easy to find data to make Quicksort behave
badly.

With the medianOf3 choice of a pivot, sorted order and reversed order arrays are best case
(still O(nlogn)). The middle element is the median every time. Even though Quicksort has
the potential to be an O(n2) sort, and Mergesort is guaranteed to be an O(nlogn) sort, in
actual practice Quicksort performs the best. In the class account on the student machine,
there is a program called Sorts.java that has the code for Selection Sort, Insertion Sort,
Mergesort, and Quicksort, along with timing. Check it out:

168

/u/css/classes/2440/Spr2015/Sorting/Sorts.java

As we have discussed before, sort methods often have the array to be sorted as the only
parameter. But the recursive implementation Quicksort needs extra parameters. The
implementation of a sort should not have to be known by the calling program. Here is a
non-recursive method that simply sets up the recursive one.

 static void quickSort (Object arr[])
 {
 quickSort(arr, 0, arr.length); // calls the recursive one
 }

169

170

Binary Trees (Sections 9.1, 9.2)

After reading section 9.1, and from CS 1100, you should be able to answer the following
questions about this tree.

1. Is the tree a binary tree? Why or why not? ___________________________

2. What is the root of the tree? _________

3. What are the leaves of the tree? _________________________

4. What is the parent of 80? _________

5. What is the only node with no parent? _________

6. What is the sibling of 39? ___________

7. What are the ancestors of 80? ________________

8. What are the descendants of 18? __________________________

9. What is the left child of 51? _________

10. What is the right child of 39? _________

11. What is the depth of node 51? __________

12. What is the depth of the root node? ___________

13. What is the depth of the tree? _______ The height of the tree? _______

14. Draw the left subtree of 51.

171

According to the textbook, what is the depth (or height) of an empty tree (a tree with no
nodes)? ____________ Note: Many textbooks define depth (or height) differently from
our textbook. Their depth or height will be one more than ours (ours counts the number of
edges on the path from the root to the most remote leaf. Others count the number of
vertices, including the root and leaf). By definition, those books will define the depth of an
empty tree as 0. Does anyone remember how the discrete math book defines height (or
depth) of a tree? Be careful on questions on trees on standardized tests. They should
define height with their questions.

In discrete math you studied binary search trees. Binary search trees are very useful.
They are covered in the latter part of chapter 9 in our textbook. We won't spend time on
them this semester but you will study them in in CS 3460. The binary tree on the previous
page is NOT a binary search tree. Why not?

Full Binary Trees

1. What is a full binary tree?

2. Is the binary tree on the previous page a full binary tree? ________

3. Draw a skeleton for a full binary tree with 15 nodes.

4. What is the height of a full binary tree with 1 node? ______ 3 nodes? ______

7 nodes? _______ 15 nodes? _______ n nodes? _____________________

5. How many nodes will a non-empty full binary tree of height h have? ___________

Complete Binary Trees

1. What is a complete binary tree?

2. Is the tree on the previous page a complete binary tree? _________

172

3. Draw a complete binary tree with 12 nodes. To review some discrete math material,
put some values in the tree that make it a binary search tree, too.

Storing Complete Binary Trees in Arrays

In section 9.2 of the textbook, we see that a complete binary tree can be stored in an array.
We store the elements level by level, left to right, beginning in cell 0 of the array. Show
how the complete binary tree that you drew on the previous page can be stored in this
array:

0 1 2 3 4 5 6 7 8 9 10 11

Using the Indices of an Array Implementation of a Complete Binary Tree

From the array we can get the same parent/child information as we can from looking at the
complete binary tree.

1. Where in the array is the parent of the node at index 6? _________

2. Where in the array is the parent of the node at index 9? _________

3. Where, in general, is the parent of the node at index k? _________

4. Where in the array are the children of the node at index 4? ______________

5. In general, where are the children of the node at index k? __________________

If a binary tree is not a complete binary tree, it is not usually stored in an array. In section
9.2, the author shows how a binary tree can be represented with nodes that contain data
and two links to left and right children. You will use a similar representation when you
study binary search trees in CS 3460, but we will not use it here.

173

Test your understanding of trees by answering the following true/false questions.

1. (True, False) All binary trees are complete binary trees.

2. (True, False) All full binary trees are complete binary trees.

3. (True, False) All complete binary trees are full binary trees.

4. (True, False) A binary tree of height 10 might have exactly 50 nodes.

5. (True, False) A binary tree of height 50 might have exactly 25 nodes.

6. (True, False) A binary tree of height 100 might have exactly 99 nodes.

7. (True, False) A full binary tree of height 10 will have exactly 1024 nodes.

8. (True, False) A complete binary tree with 64 nodes will have height 8.

9. (True, False) A complete binary tree with 10,000 nodes will have height 13.

174

Binary Heap (Section 10.1)

A binary heap is NOT a binary search tree. Make sure you do not confuse the two data
structures. Both use a binary tree, but they are quite different.

A binary heap is a complete binary tree with values in a certain arrangement. Using circles
for nodes, draw the skeleton of a complete binary tree with 19 nodes. Do not put values in
your nodes yet. We will turn the complete binary tree into a binary heap by adding those
values.

Notice that at each level of the tree, other than the bottom level, there are a power of 2
nodes. Each level, other than the bottom level, has twice as many nodes as the previous
level has. A complete binary tree always has as many leaves as it has other nodes. In terms
of n, give an exact formula for the height of a complete binary tree with n nodes.

Now we will add values to your tree to turn it into a binary heap. In heap order, a parent
has a value at least as large as either of its children. It is fine if the left child's value is
higher than the right child's value, or vice versa. Fill in the values of the above tree so that
the tree is in heap order

Priority Queues

Priority queues are data structures designed to be able to access the item of highest priority
quickly. Binary heaps are used to implement priority queues more efficiently than sorted
arrays, sorted linked lists, or binary search trees. Binary heaps store the highest priority
item in the root where it can be accessed immediately. As items are inserted and removed

175

from a binary heap, heap order has to be re-established. We will discuss how to do this
shortly.

In the heap you made on the previous page, high values meant high priority. Sometimes
higher priority is represented by lower numbers. Our textbook represents higher priority
with higher numbers so that's what we will do.

Inserting Into Binary Heaps

Items to be added to the heap are inserted at the bottom in the next available slot on the
bottom level of the complete binary tree. If the inserted item messes up the heap order, we
keep swapping it with its parent until the resulting tree is again in heap order. At most
O(log n) swaps are necessary.

Insert the following items one at a time into a binary heap:

56, 92, 14, 80, 9, 22, 105, 95, 80, 50, 70, 42

Deleting From a Binary Heap

When we remove the highest priority item from the root of the binary heap, we must fill in
the hole that is left. We take the rightmost item from the bottom level of the tree and put it
into the hole. Then that value is percolated down until it reaches an appropriate spot in
the tree. To percolate down, we swap the item with the larger (higher priority) of its
children until it either reaches the bottom level of the tree or has as high of a priority as its

176

children. Our textbook calls this process "reheapification downward," but it is called
percolating down in many books. The method that carries out the action is called
deleteMax(). Show the result of two deleteMax() operations on the heap you created on
the previous page. Draw the heap again before doing the deletions.

Complexity Questions

A binary heap is a complete binary tree. It is usually stored in an array, as we studied in
section 9.2. Recall that the goal of a priority queue is to be able to access the highest
priority item quickly. Where in the array is the highest priority item of a binary heap
located? ______________ What is the complexity of a peek() method that returns
(without removing) the highest priority item in a heap? ________________

With a priority queue, data can keep trickling in. Each time another piece of data comes in,
we insert it using the technique we learned earlier. Suppose we are inserting an element
into a binary heap. What values (in comparison to other values in the heap) will cause us
to do the most work (make the largest number of swaps)?

What is the worst-case complexity of a single insertion into a binary heap? ___________

177

Suppose we are building a new binary heap and several pieces of data need to be inserted.
What arrangement of this data will cause more swapping, smallest to largest order or
largest to smallest order?

The worst-case complexity of the total of all the insertions is what? ________________

What are the complexities of each of the following steps involved in deleting the highest
priority item in a binary heap?

1. Save the highest priority item in a temporary variable. ____________________

2. Place the last item in the heap at the top. _____________________________

3. Percolate that last item down until it finds its proper place in the heap._________

Therefore, the worst-case complexity of a single deleteMax() operation is ___________.

The average case is usually the same as the worst case. Why?

The following chart can help answer questions about why a binary heap is worth the
trouble of implementing it, compared to using a sorted array or a sorted linked list as a
priority queue. Give the big-oh complexity of each of the following methods for each
structure.

 Access high priority

item
Insert an arbitrary
item.

Remove the high
priority item.

Binary Heap

Sorted Array

Sorted Linked List

There is a PriorityQueue class in the Java library. It makes smaller values have the higher
priority, though it gives you options to change that. It has strange names for adding an
item and removing the highest priority item. The add method is called offer() and the
method that removes the highest priority element is called poll().

178

HeapSort (Section 12.3)

As a review of the previous material, place the following elements into a binary heap and
draw the complete binary tree:

83, 14, 90, 3, 200, 17, 45, 20, 8, 50, 12, 52

Now show the underlying array.

0 1 2 3 4 5 6 7 8 9 10 11

Show the result of a deleteMax() operation.

0 1 2 3 4 5 6 7 8 9 10 11

179

Show the result of another deleteMax() operation.

0 1 2 3 4 5 6 7 8 9 10 11

Note that we don't need the last two array spots any more.

There is a cool sorting algorithm called heapSort that makes use of a binary heap. It
requires that all the data be available before the sort, and it uses the idea that every time
you remove the highest priority element, you end up with one more unused position in the
array.

Here is the idea of the sort: First make a binary heap out of an unsorted array. Then save
the highest priority element in a temporary variable and call deleteMax() to remove it
from the heap. Now that the heap has one fewer element, the last cell of the array is
unused. Store the value from the temporary variable in that location and consider that cell
not to be part of the heap any more. Then repeat, shrinking the size of the heap at every
step and storing the next largest element in the newest unused cell of the array. Here is the
code for heapsort. Code for heapInsert() and deleteMax() is not shown.

180

 public void heapSort(int [] array)
 {
 // make a binary heap out of the array
 for (int i = 1; i < array.length; i++)
 {
 // assume the array from 0..i-1 is in heap order
 // insert the item at position i into the heap
 heapInsert(array, i);
 }
 // deleteMax one by one, putting the maxes in the newly unused
 // entry of the heap
 for (int i = array.length-1; i > 0; i--)
 {
 int temp = array[0]; // temp is the current maximum item
 deleteMax(array, i); // delete the max from a binary heap
 // stored in array [0..i]
 array[i] = temp; // put the removed element at the old
 // end of the heap
 }
 }

What is the complexity of the first for loop in the code shown above? _______________

What is the complexity of the second for loop? ________________

What is the total complexity of heapsort? _________________

181

182

Final Exam Study Guide

1. Chapter 1:
a. Pre-conditions and Post-conditions
b. Big-oh Analysis: Be able to tell the Big-oh of a method given to you. Be able to

use the Big-oh formula given in class.
c. Boundary conditions and testing
d. Two-dimensional arrays

2. Chapter 2: Java classes

a. The ADT – abstract data type
b. References vs. primitives
c. Exceptions
d. Clone and equals methods

3. Chapter 3: Collection Classes

a. Implementing a Bag or a Sequence with an Array
b. Understanding the difference between the size and the capacity with the array

Implementation
c. Understanding the big oh of the bag class operations and the sequence

operations.

4. Chapter 13: Inheritance:

a. Be able to extend a class. Keywords: super, protected, instanceof
b. Know what it means to override a method
c. Narrowing and widening conversions – what assignments are allowed
d. Be able to write a class that extends another
e. Abstract classes and Interfaces. Be able to write an abstract class or an interface.

Be able to write a class that implements an Interface.

5. Chapters 4 : Linked Lists

a. Be able to trace code with the Node class.
b. Be able to write some linked list code. Example: the question on the last test

that asked you to write the Stack class.
c. Know what operations are more efficient on a linked list and what operations are

more efficient on an array.

6. Chapter 5: Generics

a. Know what is involved in changing a non-generic class or method to a generic
one.

b. Be able to write a small generic class.
c. Be able to use a generic node class.
d. Know the methods in the interfaces: Iterable<T>, Iterator<T>, Comparable<T>.

Know when these interfaces are needed.

183

7. Chapter 6 : Stacks
a. Know what a stack is, and what the common stack operations are. Know what

LIFO stands for.
b. Understand the Stack applications we studied: balanced parenthesis, infix to

postfix.
c. Know the big-oh of the standard stack operations.

8. Chapter 7: Queues

a. Know what a queue is, and what common queue operations are.
b. Understand how a queue was implemented as an array (and how the data could

end up wrapping around from the back of the array to the front).
c. Understand the linked list implementation of a queue, and why it is important to

have a reference to the tail of the queue.
d. Know the big oh of the standard queue methods.

9. Chapter 8: Recursion

a. Be able to trace recursive code and tell what it does.
b. Write a recursive method to do something. There is a recursion section on

Javabat if you want to practice.

10. Chapter 11: Searching

a. Understand the serial and binary searches and the code that goes with them.
b. Know the complexity of the binary search, and understand what makes a method

have a complexity of log(n). Make sure that you understand that the underlying
array must be sorted in order for a binary search to be done.

c. Hash tables – understand the goal of hashing. Be able to place some elements in
a hash table, given a hash method. Be able to use linear probing, double
hashing, or chaining to handle collisions.

d. Understand what the hashCode() method is supposed to do : the method that is
used by the Java library HashMap, HashSet, and HashTable classes.

11. Chapter 12: Sorting

a. Selection Sort – be able to show how it works. Know its complexity.
b. Insertion Sort – be able to show how it works. Know its complexity.
c. Bubble Sort – be able to show how it works. Know its complexity.
d. Merge Sort – be able to show how it works. Know its complexity.
e. Quick Sort – be able to show how it works. Know its complexity. Be able to

trace an array using the partition method given in class on Wednesday.

184

Homework: Two-dimensional Arrays

Name ___________________________

1. Write a void method, showMap, that takes a 2-dimensional array of boolean as a parameter

and prints the array in the following tabular format: if the corresponding entry is true, then an

‘X’ is printed, otherwise a space (' ') is printed.

2. Write a method createMines that creates and returns a 10x10 array of boolean. Set 10 random

entries in the table to true. The rest of the entries should be false.

185

3. Write a method, findAverages, which takes a 2-dimensional array of double as a parameter and

returns a 1-dimensional array of double containing the averages of each row of the2-

dimensional array.

4. Write a boolean method, noDuplicate, which takes a 2-dimensional array of int as a parameter

and returns true if there are no two entries in the array that are the same and false otherwise.

186

Homework: Big-oh Analysis

Name ___________________________

1. Joe Smoe wrote a method to evaluate his Steiner Tree class. The method is O(n2) where n is the

number of vertices in the tree. When n = 1,000 his program takes 35 time units. How long

would you expect the program to take when n = 5,000? ______________

2. Graduate student Linda Hand is also working on the Steiner Tree problem. She claims the

following method isConstant is constant because it has no loops. In fact it only has one line - a

call to the contains method on neighborList which is an ArrayList object. What is wrong with

Linda's claim?

 public boolean isConstant (Neighbor j) {
 return neighborList.contains(j);
 }

3. Geraldine's assignment is to write either a SelectionSort or a QuickSort. She selects one of the

two sorts and implements it correctly. When she runs the sort on a list of length n = 5,000, the

sort takes 20 time units. When she runs the sort on a list of n = 100,000, the sort takes 525

time units. SelectionSort is O(n2) and QuickSort is O(nlogn). Which sort do you think she

implemented? Why?

4. Ryan's puzzle program is O(2n). It still runs fairly fast, a half minute or so, when n = 20, but he

needs to run it on n=100. He has tried running the program for over two weeks and it still

hasn't come back. "I know what I'll do," says Ryan. "I'll use a network of 5 computers, and give

each computer one fifth the work." Even assuming that Ryan can divide the work evenly

between the five computers, what is wrong with his reasoning?

187

5. What is the running time of the following methods?

 public static void first (double arr[])
 {
 int count = arr.length;
 int middle = count / 2;
 if (count > 0)
 {
 for (int i = 0; i < middle; i++)
 if (arr[i] < arr[middle])
 arr[i] = Math.random();
 }
 }

Running Time: ________________________

 public static int second(int n)
 {
 int number=0;
 for (int i = 0; i < n; i++)
 {
 for (int j = 0; j < n; j++)
 {
 number++;
 }
 for (int k = 1; k < i; k++)
 {
 number = number + i * i - k;
 }
 }
 return number;
 }

Running Time: ________________________

 public static void third(int arr[]) // n is the length of the array
 {
 int k, index;
 for (int i = 0; i < arr.length; i++)
 {
 for (int j = 0; j <= i; j++)
 {
 k = 0;
 while (k < i*j)
 {
 index = (i+j+k) % arr.length;
 arr[index] += 2*i*j - k*k;
 k++;
 }
 }
 }
 }

Running Time: ________________________

188

Homework: Exceptions
Name _________________________

All true/false are worth 5 points each. Your name above is worth 10 points. Problems on the back
have point values shown.

Part I. True or False.

1. _____ If you write a method that might cause a checked exception, you must wrap the throw

code in a try/catch block or declare the exception in the method’s header (state in the header

that the method throws an exception).

2. _____ If you write a method that might cause a runtime exception, you must wrap that code in

a try/catch block or declare the exception in the method’s header.

3. _____ A finally block is required after a catch block.

4. _____ Handling an exception is referred to as “ducking” the exception.

5. _____ If an exception is thrown, the remaining code in the try block is skipped.

6. _____ If an exception is not thrown in a try block, the corresponding catch block is skipped.

7. _____ If a try block has multiple catch blocks, the order of the catch blocks in the code is

irrelevant.

8. _____ Runtime exceptions are exceptions that cannot be handled.

9. _____ If method A calls a method B that can throw an exception, and method A declares the

exception (in the header states that it throws the exception), then method A does not have to

put the call to method B in a try/catch block.

10. _____ If you write your own exception class, it must be a subclass of some other exception

class.

11. _____ Both of the catch blocks below do the exact same thing (i.e., it doesn’t matter if you use

e or ex).

 catch(Exception e)
 {
 System.out.println (e.getMessage());
 System.exit(0);
 }

 catch(Exception ex)
 {
 System.out.println (ex.getMessage());
 System.exit(0);
 }

189

Part 2: Short answer.

1. What is the difference between throwing an exception and handling an exception? (5 pts)

2. Under what circumstances do you have to catch an exception in the code you write? (5 pts)

3. Suppose we need to write code that receives String input from a user, and we expect the String
input to contain a double value (inside quotes). We want to convert the String to a double using
the static method Double.parseDouble(String s) from the Double class. The parseDouble
method throws a NumberFormatException if the String s is not a parsable double. Write a
method printSum that takes two String parameters (that hopefully have parsable doubles in
them), and either prints the sum or prints that the inputs were invalid by handling the
exception in a try/catch block and responding accordingly. (20 pts)

4. Suppose you did not put the code for parsing the double into a try/catch block. Would you get a
compiler error? If not, what would have happened if the method was called with bad input? (5
pts).

Homework: Bags and Sequences
Name_________________________

1. The invariants of a class are written for the programmer. The invariants are statements about

the instance variables (fields) of the class. The programmer who is writing a method can
depend on the invariants being true at the beginning of the method, and he/she must make
sure they are true when the method finishes. What are the invariants for each of the instance
variables in the IntArrayBag class:
a. Invariant for data:

190

b. Invariant for manyItems:

2. The elements in the bag are stored in an int array called data, and manyItems tells how many
items are stored in the bag. Why do we need the instance variable manyItems? In other words,
why can’t we just use data.length?

3. In the add, addAll, and addMany methods, what happens when data.length is not large
enough to support the addition of the items?

4. What does the ensureCapacity method do when it is called with a value that is less than the
length of the data array?

5. In chapter 2 of our text (p.83-84), the book gives instructions on how to write a clone() method.
The clone method on page 139 has one additional statement that the clone() in the Location
class did not have.

a. What is the additional statement?

b. In general, when you are writing a clone() method for a class, when are these additional
statements needed?

6. Let bag be an IntArrayBag with fifteen items (in data[0]..data[14]). Suppose that the remove
method is called and the first occurrence of the item to remove is at index 2. What position(s)
in the data array will change, and how will they change?

How will manyItems change?

7. In lab this week, you will implement the Sequence ADT described on pages 145-159 of your
textbook. It is important that you thoroughly understand the ADT. In addition to the methods
listed in your textbook, you will include the two methods toString() and equals() as described
below:

191

/**
 * Returns a String representation of this sequence. If the sequence is
 * empty, the method should return <>. If the sequence has one item,
 * say 1.1, and that item is not the current item, the method should
 * return <1.1>. If the sequence has more than one item, they should
 * be separated by commas with a following space, for example:
 * <1.1, 2.2, 3.3>. If there exists a current item, then that item
 * should be surrounded by square brackets. For example, if the second
 * item is the current item, the method should return: <1.1, [2.2], 3.3>.
 *
 * @return a String representation of this sequence.
 */
public String toString()

/**
 * Determines if this object is equal to the other object.
 *
 * @return true if this object is equal to the other object, false
 * otherwise
 */
public boolean equals(Object other)

ASSIGNMENT: Look at the following program, StudentAssignment.java, which uses a
DoubleArraySeq. The program creates a DoubleArraySeq and calls some of its methods. Fill
in the blanks in the comments to show the values of the variables at the end of the statements
(note that some of the if statements will have false conditions, and the variables inside will not
change.) By the way, an empty sequence has no current element.

public class StudentAssignment {
 public static void main(String[] args) {
 DoubleArraySeq seq = new DoubleArraySeq();
 int answer = 1;
 int size = 0;
 double current = 0.0;
 String content = "";
 boolean isCurrent = false;
 int capacity;

 size = seq.size(); // 1. size = _______________

 capacity = seq.getCapacity(); // 2. capacity = ____________

 isCurrent = seq.isCurrent(); // 3. isCurrent = ___________
 if (isCurrent)
 current = seq.getCurrent(); // 4. current = ______________

192

 content = seq.toString(); // 5. content = _____________
 seq.trimToSize();
 capacity = seq.getCapacity(); // 6. capacity = ____________
 seq.ensureCapacity(5);
 capacity = seq.getCapacity(); // 7. capacity = ____________
 seq.addAfter(1.1);
 content = seq.toString(); // 8. content = _____________

 size = seq.size(); // 9. size = _________________
 if (seq.isCurrent())
 current = seq.getCurrent(); // 10. current = ______________
 seq.addBefore(2.2);
 content = seq.toString(); // 11. content = _____________

 size = seq.size(); // 12. size = ________________
 if (seq.isCurrent())
 current = seq.getCurrent(); // 13. current = ______________
 seq.addAfter(3.3);
 content = seq.toString(); // 14. content = ______________

 size = seq.size(); // 15. size = _________________
 if (seq.isCurrent())
 current = seq.getCurrent(); // 16. current = ______________
 seq.advance();
 content = seq.toString(); // 17. content = ________________
 if (seq.isCurrent())
 current = seq.getCurrent(); // 18. current = ______________
 seq.advance();
 content = seq.toString(); // 19. content = ________________
 if (seq.isCurrent())
 current = seq.getCurrent(); // 20. current = ______________
 seq.addBefore(4.4);
 content = seq.toString(); // 21. content = ________________

 size = seq.size(); // 22. size = _________________
 if (seq.isCurrent())
 current = seq.getCurrent(); // 23. current = ______________
 seq.advance();
 content = seq.toString(); // 24. content = ________________
 if (seq.isCurrent())
 current = seq.getCurrent(); // 25. current = _______________
 seq.advance();
 content = seq.toString(); // 26. content = ________________
 if (seq.isCurrent())
 current = seq.getCurrent(); // 27. current = ________________
 seq.advance();
 content = seq.toString(); // 28. content = ________________
 if (seq.isCurrent())
 current = seq.getCurrent(); // 29. current = ________________
 seq.advance();
 content = seq.toString(); // 30. content = ________________
 if (seq.isCurrent())
 current = seq.getCurrent(); // 31. current = ________________

193

 seq.start();
 content = seq.toString(); // 32. content = ________________
 if (seq.isCurrent())
 current = seq.getCurrent(); // 33. current = ________________
 seq.advance();
 content = seq.toString(); // 34. content = ________________
 seq.removeCurrent();
 content = seq.toString(); // 35. content = ________________

 size = seq.size(); // 36. size = ___________________
 if (seq.isCurrent())
 current = seq.getCurrent(); // 37. current = ________________
 seq.removeCurrent();
 content = seq.toString(); // 38. content = ________________
 if (seq.isCurrent())
 current = seq.getCurrent(); // 39. current = ________________
 seq.removeCurrent();
 content = seq.toString(); // 40. content = ________________
 if (seq.isCurrent())
 current = seq.getCurrent(); // 41. current = ________________

 content = seq.toString(); // 42. content = ________________
 seq.start();
 content = seq.toString(); // 43. content = ________________
 seq.removeCurrent();
 content = seq.toString(); // 44. content = ________________
 }
}

194

Homework: Inheritance
Name___________________________________

1. CuckooClock and GrandfatherClock are both subclasses of Clock. The following statements
occur in a correct program:

Clock myClock; // line 1

CuckooClock myClock2; // line 2

myClock = new CuckooClock(); // line 3

myClock.tellHour(); // line 4

myClock = new GrandfatherClock(); // line 15

myClock.tellHour(); // line 16

a. What is the static type of myClock? __________________________________

b. What is the static type of myClock2? __________________________________

c. What is the dynamic type of myClock when line 4 is executed? ________________

d. In all three classes (Clock, CuckooClock, and GrandfatherClock) there is a tellHour method.

In which class does the compiler look for a tellHour method that is called on the myClock?

e. When line 4 is executed, which tellHour method will be executed: the one in Clock, the one
in CuckooClock, or the one in GrandfatherClock? _______________________

f. When line 16 is executed, which tellHour method will be used: the one in Clock, the one in
CuckooClock, or the one in GrandfatherClock? _______________________

2. The Book class constructor has the following signature:

public Book(String author, int numPages)

Write the class wrapper and constructor for a class called ReferenceBook which is a direct
subclass of Book and which contains one String field specifying a subjectArea. The
ReferenceBook constructor takes three parameters: the author, the number of pages, and the
subject area. The ReferenceBook constructor's statements must cause a new ReferenceBook
object to be initialized with author, pages, and area.

195

3. In the following pairs of classes identify the superclass by circling it, or write NONE if no
inheritance relationship is clearly present. Write an explanation if necessary to clarify your
answer.

Cereal, Vitamin

DVDPlayer, VCRPlayer

Refrigerator, Appliance

Fruit, Food

Cup, Saucer

Clothing, Coat

Camera, Picture

4. If a child class does not provide any constructors, what constructors does it inherit from the
superclass?

5. If a child class does provide constructors, what constructors does it inherit from the

superclass?

6. Assume we have four classes: Pet, Dog, Cat and Poodle. Dog and Cat are both subclasses of

Pet. Poodle is a subclass of Dog. Which of the following assignment statements are
syntactically legal given the declarations shown?

Pet p1;

Pet p2;

Poodle poodle1;

Dog d1;

Cat c1;

d1 = new Pet(); legal illegal

p2 = new Poodle(); legal illegal

poodle1 = new Dog(); legal illegal

p1 = new Cat(); legal illegal

p1 = new Poodle(); legal illegal

p1 = (Poodle) d1; legal illegal

p2 = (Poodle) c1; legal illegal

c1 = p1; legal illegal

d1 = poodle1; legal illegal

poodle1 = p2; legal illegal

poodle1 = d1; legal illegal

196

Homework: Linked Lists #1
Name_________________________________

What is the output of the following program? Draw pictures to show the linked list and its
references as they change.

public class Animals
{
 public static void main(String args[])
 {
 String arr[] = {"pig", "cow", "dog"};
 Node p,q,r,s;

 p = new Node ("cat");
 q = p;
 r = p;

 p = new Node(arr[0]);
 p.setLink(q);

 q = new Node(arr[1]);
 q.setLink(p);

 p = new Node(arr[2]);
 p.setLink(q.getLink());
 q.setLink(p);

 if (r != null)
 System.out.println ("r: " + r.getData());
 if (p != null && p.getLink() != null)
 System.out.println
 ("p: " + p.getData() + " " + (p.getLink()).getData());

 p.getLink().setData(p.getData());

 for (s = q; s != null; s = s.getLink())
 System.out.println(s.getData());
 }
}

197

198

Homework: Linked Lists #2
Name_________________________________

What is the output of the following program? Draw pictures to show the linked list and its
references as they change.

public class Cities
{
 public static void main(String args[])
 {
 String arr[] = {"Paris", "Rome", "London"};
 Node p,q,r;

 r = new Node ("Madrid");
 p = r;
 q = null;
 for (int i = 0; i < 3; i++)
 {
 q = new Node (arr[i]);
 if (i % 2 == 0)
 {
 r.setLink(q);
 r = q;
 }
 else
 {
 q.setLink(p);
 p = q;
 }
 }

 System.out.println ("Answer 1: " + p.getData());
 System.out.println ("Answer 2: " + q.getData());
 System.out.println ("Answer 3: " + r.getData());

 q = p.getLink();
 p.setLink(new Node("Athens",q));

 System.out.print ("Answer 4: List: ");

 for (q = p; q != null; q = q.getLink())
 {
 System.out.print (q.getData() + " ");
 }
 System.out.println();

 }
}

199

200

Homework: DoubleLinkedSeq
Name__________________________

For each of the following scenarios, show how the reference fields of the DoubleLinkedSeq object
change (head, tail, cursor, and precursor). Each scenario shows the sequence as it is before the
code. You make changes to show how it will be after the code.

seq.advance();

seq.advance();

seq.advance();

seq.removeCurrent();

seq.start();

seq.addAfter(6);

201

seq.addBefore(6);

seq.addAfter(14);

seq.addAfter(30);

seq.addAll(seq);

202

Homework: Generics
Name____________________________

1. Write a generic method called findElement that receives an array and an element. The

method should return the index at which the first occurrence of the element is found,
or -1 if the element is not found in the array.

2. Suppose we want to write a generic findMax routine. Consider the code below. This
code cannot work because the compiler cannot prove that the call to compareTo is
valid; compareTo is guaranteed to exist only if T is Comparable. Rewrite the header of
the method so that it will work if T or any of its superclasses implemented the
Comparable interface.

public static <T> T findMax(T[] a)

{

 int maxIndex = 0;

 for (int i = 1; i < a.length; i++)

 {

 if (a[i].compareTo(a[maxIndex]) > 0)

 {

 maxIndex = i;

 }

 }

 return a[maxIndex];

}

203

3. Make any changes necessary to the header, fields, and constructor to turn this part of

the DoubleNode class into a generic Node class.

public class DoubleNode

{

 private double data;

 private DoubleNode link;

 public DoubleNode(double initialData, DoubleNode initialLink) {

 data = initialData;

 link = initialLink;

 }

 public DoubleNode() {

 data = 0.0;

 link = null;

 }

4. Make any changes necessary to the listCopyWithTail method for the generic Node

class.

public static DoubleNode[] listCopyWithTail(DoubleNode source)

{

 DoubleNode[] answer = new DoubleNode[2];

 // Handle the special case of the empty list.

 if (source != null)

 {

 // Make the first node for the newly created list.

 DoubleNode copyHead = new DoubleNode(source.data, null);

 DoubleNode copyTail = copyHead;

 // Make the rest of the nodes for the newly created list.

 while (source.link != null)

 {

 source = source.link;

 copyTail.addNodeAfter(source.data);

 copyTail = copyTail.link;

 }

 // Return the head and tail references.

 answer[0] = copyHead;

 answer[1] = copyTail;

 }

 return answer;

 }

204

5. Suppose we are changing the IntLinkedBag to a generic LinkedBag. Indicate the

necessary changes that we would need to make to the following equals method.

Assume the generic Node class.

public boolean equals(Object other)

{

 if (this == other)

 return true;

 if (other instanceof IntLinkedBag)

 {

 IntLinkedBag otherBag = (IntLinkedBag) other;

 if (manyNodes != otherBag.manyNodes)

 return false;

 for (IntNode t1 = head, IntNode t2 = otherBag.head; t1 != null;

 t1 = t1.getLink(), t2 = t2.getLink())

 {

 if (t1.getData() != t2.getData())

 return false;

 }

 return true;

 }

 return false;

}

205

206

Homework: Stack Applications
Name ________________________

1. Put the following infix expressions into postfix notation:

a. 23 – 14 + ((12 + 6 * 3) / (4 * 2) – 5

b. (4 * a + a) * a / (b + 10)

c. 22 + 8 * 14 / (33 – 12 * 3)

2. Evaluate the following postfix expressions (the answer is a number):

a. 60 6 12 + 3 * 2 + 8 /

b. 22 8 12 3 / - 10 + 9 - + 3 /

c. 10 20 + 16 8 / * 40 + 2 /

207

208

Homework: Queues
Name___________________________

1. Consider the following ArrayList implementation of a queue:

public class ArrayListQueue<E> {

 private ArrayList queue;

 public ArrayListQueue() { queue = new ArrayList<E>(); }

 public E dequeue(){ return queue.remove(0); }

 public void enqueue(E element) { queue.add(element); }

 public E peek() { return queue.get(0); }

}

Why is this implementation inefficient? Would it be better to make the front of the queue be

at the end of the ArrayList and the rear of the queue be at the front of the ArrayList?

2. A queue can also be implemented using two stacks. One stack is used to enqueue elements,

while the other is used to dequeue elements. When an element is added to the queue it is

pushed on the in stack. When an element is removed from the queue it is popped off the out

stack. If the out stack is empty when an element needs to be removed, the elements of the in

stack are transferred to the out stack and then the element is removed. This is a common

implementation of a queue for functional programming languages like Haskell.

Draw two stacks and use them to carry out the following operations on a queue: add(1),

add(2), add(3), remove(), add(4), remove(), remove(), add(5), add(6), remove(), add(7),

add(8), add(9), remove(). Clearly show the final contents of each stack.

209

210

Homework: Recursion
Name______________________________

1. This method is called with gretel(20). What is returned?

public int gretel (int num)

{

 int x;

 if (num < 12)

 {

 x = 12;

 }

 else

 {

 x = num * gretel(num-5);

 }

 return x;

}

2. What is the output from hansel(4)?

public void hansel (int num)

{

 if (num > 0)

 {

 System.out.println("Line 5: " + num);

 hansel(num-1);

 System.out.println("Line 7: " + num);

 }

}

3. What is the output of mouse(3)?

public void mouse(int num)

{

 if (num > 0)

{

 System.out.println("It is April.");

 mouse(num-1);

 }

 System.out.println("Almost over " + num + "!");

}

211

4. What is returned by woods(3)?

public int woods(int num)

{

 int x;

 if (num <= 0)

 {

 x = num;

 }

 else if (num % 2 == 0)

 {

 x = woods(num-1) + 4;

 }

 else

 {

 x = woods(num-1) + woods(num-2);

 }

 return x;

}

212

Homework: Quadratic Sorting Algorithms
Name__________________________

1. Here is a chart showing how the elements of an array change as the selection sort algorithm is

used to sort the array. At each step the smallest element of the array is found and is then
swapped into its appropriate position. The unsorted portion of the array then shrinks by one
element. Make a similar chart for the second array. If at some step the row doesn't change,
you should still rewrite the row.

2. Here is a chart showing how the elements of the array change during insertion sort. Make a
similar chart for the second array. If at some step the row doesn't change, you should still
rewrite the row.

14 82 11 35 99 7 3 75 24 9

14 82 11 35 99 7 3 75 24 9

213

3. Now show how the array changes after each pass of bubble sort. At each step, bubble the
smallest element leftward. You don't have to record all the swaps – show the data at the end
of each pass.

14 82 11 35 99 7 3 75 24 9

214

Homework: Quicksort
Name________________________

1. Run the partition code provided on the handout from class on this array:

mid = _____ pivot = ______ pivot ends up in cell _____

2. Now imagine that the code inside the for loop is changed as follows (< in first while is
changed to <=). With this change, all duplicates of the pivot end up in the left portion of the
array. Run the partition code on the array again, using the changed code.

 while (data[tooBigIndex] <= pivot)
 tooBigIndex++;

 while (data[tooSmallIndex] > pivot)

 tooSmallIndex--;

 if (tooSmallIndex <= tooBigIndex)

 break;

 swap (data, tooBigIndex, tooSmallIndex);

 tooBigIndex++;

 tooSmallIndex--;

mid = _____ pivot = ______ pivot ends up in cell ______

3. If there are many duplicates in your data, the version of partition given in class is best. Why?

9 6 15 9 9 18 9 18 3 15 9 6 3 9 6 9 9 3 15 9

9 6 15 9 9 18 9 18 3 15 9 6 3 9 6 9 9 3 15 9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

215

